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My work at 
GitHub

50% of time on open-source

50% of time on “Git at GitHub”

Triaging mailing list, responding to bugs, 
submitting patches, PLC work.

Responding to escalations, identifying pain 
points, writing code, working with internal teams.
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“Git at GitHub”

Today’s agenda

Git ➡  GitHub GitHub ➡  Git
Our fork model, where and 

why we use Git.

Features from the open-
source project we use at 

GitHub.


Features developed at GitHub 
that we contributed to Git.
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Git at GitHub
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200M+
public+private repositories annual contributions

2.6B+

Some numbers…
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Git at GitHub
• (Lightly) modified fork of git/git, called “github/git”


• Powers many internal APIs and processes:


• pushes, fetches, clones


• periodic repacking


• many internal RPCs (e.g., get the contents of this README, count of 
branches, merges, etc.)


• libgit2


• remaining internal RPCs (e.g., does this branch exist?, create an object, etc.)
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github/git
• Lightly modified fork based on the open-source Git project.


• Handful of “uninteresting” permanent patches (logging, metrics, internal 
services)


• Home of new feature development at GitHub


• multi-pack bitmaps


• staging ground for commit-graph changes


• tree-level git blame implementation


• Continuous deployment to GitHub.com


• Back-merges with upstream Git, usually 1-2 major versions behind
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github/git

Image credit: Lessley Dennington, GitHub
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Why Git?
• Could have built “Git” operations on any technology.


• Git is:


• fast, and getting faster


• battle-tested, and reliable


• secure


• mutually-beneficial



September 15, 2022 Git at GitHub Scale, Git Merge 2022 @ttaylorr

Git ➡ GitHub
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Upstream Git 
features at 
GitHub

commit-graph and

changed-path Bloom filters

partial clones

merge-ort
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commit-graphs &

changed-path Bloom filters
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commit-graphs &

changed-path Bloom filters
• On-disk serialization of commit data:


• Root tree ID


• Date


• Parent(s), and octopus edges


• Upstream feature developed at Microsoft by Derrick Stolee
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commit-graphs &

changed-path Bloom filters

Image credit: Derrick Stolee, GitHub
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commit-graphs &

changed-path Bloom filters
• GitHub updates the commit-graph on each new push


• Each update adds one new “layer” to the commit-graph chain


• Occasionally updates cause us to “merge” previous layers


• Changed-path Bloom filters are computed for incoming commits up to a 
threshold



September 15, 2022 Git at GitHub Scale, Git Merge 2022 @ttaylorr

• git log runtimes, p99 through p999

• 1.75s p999 -> 1s p999

commit-graphs &

changed-path Bloom filters
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commit-graphs &

changed-path Bloom filters
• git blame runtimes, p99 through p9999

• ~40% reduction p999

• fewer timeouts in p9999
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• git blame-tree runtimes, p99 through p9999

• 3.5s -> 2s p998

• fewer timeouts p999, p9999

commit-graphs &

changed-path Bloom filters
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commit-graphs & git blame-tree
• git blame-tree is a custom command that provides a tree-level blame
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commit-graphs & git blame-tree
• Existing algorithm:


• Until all paths are blamed, walk along history and compute a tree-level diff at 
each level


• New algorithm:


• Only compute a tree-level diff for unblamed paths


• Skip over parts of history where possible with Bloom filters


• Pass unblamed paths to parent(s)


• Collaboration between Derrick Stolee and myself
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• git blame-tree runtimes, p99 through p9999

• further reduction p998, 4s -> 2s

• p999, p9999 timeout reduction

commit-graphs &

git blame-tree
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Partial clones
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Partial clones
• Ability to clone specific part(s) of your repository


• Dictated by different --filter options when cloning


• Developed upstream by Jeff Hostetler and Jonathan Tan


• Integrated with bitmaps by GitHub
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Partial clones

$ best-of-five -p 'rm -rf linux.git' \

  sh -c 'git clone --bare \

    git@github.com:torvalds/linux.git’


Attempt 1: 283.75

Attempt 2: 283.97

Attempt 3: 297.601

Attempt 4: 299.141

Attempt 5: 323.365


real	4m43.750s

user	5m23.133s

sys	 1m5.691s


•full clone runtime 4m43s
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Partial clones

$ best-of-five -p 'rm -rf linux.git' \

  sh -c 'git clone --bare --filter=blob:none \

    git@github.com:torvalds/linux.git’


Attempt 1: 124.282

Attempt 2: 127.547

Attempt 3: 134.818

Attempt 4: 125.464

Attempt 5: 117.205


real	1m57.205s

user	1m16.124s

sys	 0m25.912s

•full clone runtime 4m43s

•partial clone runtime 1m57s
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merge-ort



September 15, 2022 Git at GitHub Scale, Git Merge 2022 @ttaylorr

• Elijah’s talk explained many/all of the details here


• Merges are computed proactively/manually in the web UI

merge-ort
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merge-ort
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• merge-recursive requires working copy to represent conflicts


• originally created a temporary working copy to perform a merge


• then implemented merges in libgit2 to eliminate the need for a working copy


• git merge-tree gained the ability to do “server-side” merges


• Collaboration between Johannes Schindelin and Elijah Newren


• now merge-ort powers merges on GitHub.com


• Work here done by Johannes Schindelin and Greg Hurrell

merge-ort
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GitHub ➡ Git
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GitHub 
features in 
upstream Git

multi-pack reachability bitmaps

On-disk reverse indexes

Geometric repacking

Cruft packs
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multi-pack reachability 
bitmaps
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• Each time a repository is pushed to, a new pack is added to the repository


• As more packs are added, performance degrades over time


• To keep repositories running smoothly, schedule a periodic “maintenance” 
routine on active and/or under-maintained repositories


• Maintenance compacts all objects into a single pack

Packs & maintenance
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• Running something similar to git repack -adk —write-bitmap-index.


• Why a single pack?


• Any operation which performs object lookups needs only to consult a single 
pack (+ any loose object, of which there are generally few)


• Key point: reachability bitmaps.

Repository maintenance
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• Reachability bitmaps allow us to quickly answer: “what object(s) are reachable 
from this commit?”


• Eliminates the need for object traversal, which is unbounded


• Can be combined in intuitive ways:


• The union of reachable objects among multiple bitmaps is a bitwise-OR


• The set difference (e.g., for haves and wants) is a bitwise-AND/NOT

Reachability bitmaps
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Reachability 
bitmaps

Image credit: Vicent Martí, GitHub
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Reachability bitmap limitations
• Problem: can only encode information about objects in a single pack


• Requires us to repack all objects in a repository into a single pack


• Prohibitively expensive as repositories accumulate more and more objects
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multi-pack index (MIDX)
• (Partial-)solution: multi-index index (MIDX)


• Upstream feature contributed by Derrick Stolee


• Acts like a single index over multiple packfiles
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multi-pack index (MIDX)
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MIDX pseudo-pack order
• Could we define an object order over the objects in a MIDX that we then use to 

generate a bitmap?


• If so:


• Could repack a repository into arbitrary pack structure


• Write a MIDX containing just the packs we want to keep


• Write a bitmap covering the objects over those packs
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MIDX pseudo-pack order
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MIDX pseudo-pack order
• How to map bit #5 to 

blue object?


• Could use number of 
objects in each pack to 
find the pack-relative 
position in pack-abc.


• Problem: need to know 
unique object count in 
each pack.


• Red object is only 
stored once.


• Need something better.
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On-disk reverse indexes
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Packs, indexes, reverse indexes
• Packs (*.pack files) contain a continuous sequence of objects in a 

(semi-)arbitrary order


• Indexes (*.idx files) map objects in lexicographic order to their offset in the 
corresponding .pack file


• Conceptually, reverse indexes map objects in their pack order to lexicographic 
order
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Reverse indexes
• Reverse indexes already exist in Git


• E.g., git cat-file --batch-check=‘%(objectsize:disk)’


• Computed on-the-fly by (radix) sorting an array of (object_id, offset) 
pairs


• Works, and uses an efficient sort


• But still takes time proportional to the number of packed objects


• Memory intensive


• GitHub had an on-disk version of this as an optional extension in the .bitmap 
file
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Reverse indexes
• Bitcache extension


• Appears at the end of a .bitmap file as an optional extension


• Table of 4-byte (unsigned) integers, each corresponding to a packed object


• Stored in pack order (corresponding to objects by ascending pack offsets)


• Value is the lexicographic index for each object


• Could upstream this, and use it for multi-pack reachability bitmaps


• But requires using a bitmap to be useful
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.rev files
• Instead, implement a new on-disk format used outside of the .bitmap file


• Called .rev, corresponds to both packs and MIDXs

• For packs, can be used with or without bitmaps

• For MIDXs, not useful without a bitmap
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.rev files
• Instead, implement a new on-disk 

format used outside of the .bitmap 
file


• Called .rev, corresponds to both 
packs and MIDXs


• For packs, can be used with or 
without bitmaps


• For MIDXs, requires a bitmap
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.rev files at GitHub
git pack-objects p50 CPU time,

(Homebrew/homebrew-core)
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git fetch p50-p99 CPU time,

(all repos in one site)

.rev files at GitHub
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MIDX .rev files
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MIDX .rev files
• Define a pseudo-pack order:


• Objects in pack-order


• Arrange packs according to how 
new they are


• Eliminate duplicate objects, 
resolve in favor of a “preferred” 
pack


• Store this order in a .rev file for the 
MIDX


• Can translate from bit positions by 
reading the corresponding entry
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Geometric repacking
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Geometric repacking
• Now that we can repack a repository into arbitrary structure(s)… what strategy 

should we use?


• Want two properties:


• On average, usually few packs remain after repacking


• On average, work is proportional to number of new objects since previous 
maintenance


• Simplest approach that captures the above two: make each remaining pack 
have twice the number of objects as the next-largest pack
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Geometric repacking
• First, organize packs by their object count in ascending order


• Then, determine how many large packs are already in progression


• Adjust based on rolling up remaining packs



September 15, 2022 Git at GitHub Scale, Git Merge 2022 @ttaylorr

Geometric repacking
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Geometric repacking
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Geometric repacking
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5.67 CPU-days
saved every hour on GitHub.com
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Cruft packs
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Unreachable objects
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Unreachable objects at GitHub
• Lots of unreachable objects in repositories on GitHub


• Test-merges


• Force-pushes


• Branch deletions


• Usually let these grow without bound
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Pruning unreachable objects
• Unreachable objects left alone by default


• Occasionally users request manual cleanup, and we run .gc <repo> in chat


• This causes us to run something along the lines of: 
git repack -Adn --unpack-unreachable=5.minutes.ago


• Moves reachable objects into one pack


• Removes unreachable objects (older than 5 minutes)


• Loosens remaining unreachable objects
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Pruning raciness
git gc decides commit C is 

unreachable

commit C is removed

C is made reachable via a 
reference update

git push

C advertised

Packfile dependent on C is sent

Objects depending on C enter the 
repository
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Pruning unreachable objects
• Unreachable objects which are too recent to be pruned are stored loose


• The mtime of each loose object file tracks the object’s “age”


• Writing the object sets the mtime to be “now”.
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Pruning unreachable objects
• Storing unreachable objects loose can result in creating many files, especially in 

large/active repositories with many unreachable objects


• Has a handful of other drawbacks


• Pairs of unreachable objects do not share their contents


• Having too many files can lead to performance problems, including inode 
exhaustion


• Any operation which scans loose objects slows, eventually becoming 
unusable
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Cruft packs
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Generating cruft packs
• Two cases:


• With object expiration


• First mark all reachable objects, pack those separately


• Then examine remaining unreachable objects, pack those separately 
along with their mtimes


• Without object expiration


• Same as above, but only pack recent unreachable objects


• Before packing, traverse unreachable objects to rescue any stale objects 
that are reachable from recent objects
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Generating cruft packs

(without object expiration)
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Generating cruft packs (without object 
expiration)
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Generating cruft packs (without object 
expiration)
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Generating cruft packs (with object 
expiration)
• Same procedure, except want 

to keep unreachable clusters 
of objects around


• Easy if all connected clusters 
will/won’t be pruned


• But tricky if some objects in a 
cluster are pruned and others 
aren’t


• Solution: rescuing pass to 
save unreachable but 
reachable-from-recent 
objects
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Cruft packs at GitHub
• Typically use geometric repacking eight out of every nine maintenance runs


• Ninth maintenance job collects repositories into a reachable and cruft pack


• Normal maintenance jobs does not prune objects


• (e.g., git repack --cruft -dn --write-bitmap-index)


• GitHub Support can respond to requests by running .gc <repo> in chat


• (e.g., git repack --cruft --cruft-expiration=1.minute.ago 
-dn --write-bitmap-index)
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Limbo repositories
• But we still have the advertise-then-prune race from earlier


• Idea: don’t eliminate this race entirely, but instead make it easy to recover from


• Joint work with Michael Haggerty and Torsten Walter


• In particular, move all unreachable objects to a “limbo” repository instead of 
deleting


• Then git fsck the repository to make sure no races occurred (ie., that the 
repository is non-corrupt)


• Restore objects from the limbo repository


• Then remove the limbo repository
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Limbo repositories
• Limbo repository is “just another cruft pack” with a couple of tweaks


• Cruft pack excludes all objects in the new reachable and cruft packs of the 
main repository


• And does not prune, so all objects are picked up


• This is every object that would be pruned during GC


• Pack is written to a separate repository with experimental --expire-to option


• RFC patches on the mailing list
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Recap
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Recap
• Git is a reliable, fast, secure implementation that can be relied upon at GitHub 

scale.


• GitHub uses features from upstream Git, including partial clone, commit-graph, 
and the MIDX.


• GitHub contributes tools that it writes back to the ecosystem, including MIDX 
bitmaps, cruft packs, and more.


• The same tools that power GitHub can (and do!) run on your laptop.


