
Month day, year PMM team template @author

Git at GitHub Scale
Taylor Blau (@ttaylorr), GitHub

Git Merge 2022

Month day, year PMM team template @author

Taylor Blau
@ttaylorr

Staff Software Engineer, GitHub

September 15, 2022 Git at GitHub Scale, Git Merge 2022 @ttaylorr

My work at
GitHub

50% of time on open-source

50% of time on “Git at GitHub”

Triaging mailing list, responding to bugs,
submitting patches, PLC work.

Responding to escalations, identifying pain
points, writing code, working with internal teams.

September 15, 2022 Git at GitHub Scale, Git Merge 2022 @ttaylorr

“Git at GitHub”

Today’s agenda

Git ➡ GitHub GitHub ➡ Git
Our fork model, where and

why we use Git.

Features from the open-
source project we use at

GitHub.

Features developed at GitHub
that we contributed to Git.

September 15, 2022 Git at GitHub Scale, Git Merge 2022 @ttaylorr

Git at GitHub

September 15, 2022 Git at GitHub Scale, Git Merge 2022 @ttaylorr

200M+
public+private repositories annual contributions

2.6B+

Some numbers…

September 15, 2022 Git at GitHub Scale, Git Merge 2022 @ttaylorr

Git at GitHub
• (Lightly) modified fork of git/git, called “github/git”

• Powers many internal APIs and processes:

• pushes, fetches, clones

• periodic repacking

• many internal RPCs (e.g., get the contents of this README, count of
branches, merges, etc.)

• libgit2

• remaining internal RPCs (e.g., does this branch exist?, create an object, etc.)

September 15, 2022 Git at GitHub Scale, Git Merge 2022 @ttaylorr

github/git
• Lightly modified fork based on the open-source Git project.

• Handful of “uninteresting” permanent patches (logging, metrics, internal
services)

• Home of new feature development at GitHub

• multi-pack bitmaps

• staging ground for commit-graph changes

• tree-level git blame implementation

• Continuous deployment to GitHub.com

• Back-merges with upstream Git, usually 1-2 major versions behind

September 15, 2022 Git at GitHub Scale, Git Merge 2022 @ttaylorr

github/git

Image credit: Lessley Dennington, GitHub

September 15, 2022 Git at GitHub Scale, Git Merge 2022 @ttaylorr

Why Git?
• Could have built “Git” operations on any technology.

• Git is:

• fast, and getting faster

• battle-tested, and reliable

• secure

• mutually-beneficial

September 15, 2022 Git at GitHub Scale, Git Merge 2022 @ttaylorr

Git ➡ GitHub

September 15, 2022 Git at GitHub Scale, Git Merge 2022 @ttaylorr

Upstream Git
features at
GitHub

commit-graph and

changed-path Bloom filters

partial clones

merge-ort

September 15, 2022 Git at GitHub Scale, Git Merge 2022 @ttaylorr

commit-graphs &

changed-path Bloom filters

September 15, 2022 Git at GitHub Scale, Git Merge 2022 @ttaylorr

commit-graphs &

changed-path Bloom filters
• On-disk serialization of commit data:

• Root tree ID

• Date

• Parent(s), and octopus edges

• Upstream feature developed at Microsoft by Derrick Stolee

September 15, 2022 Git at GitHub Scale, Git Merge 2022 @ttaylorr

commit-graphs &

changed-path Bloom filters

Image credit: Derrick Stolee, GitHub

September 15, 2022 Git at GitHub Scale, Git Merge 2022 @ttaylorr

commit-graphs &

changed-path Bloom filters
• GitHub updates the commit-graph on each new push

• Each update adds one new “layer” to the commit-graph chain

• Occasionally updates cause us to “merge” previous layers

• Changed-path Bloom filters are computed for incoming commits up to a
threshold

September 15, 2022 Git at GitHub Scale, Git Merge 2022 @ttaylorr

• git log runtimes, p99 through p999

• 1.75s p999 -> 1s p999

commit-graphs &

changed-path Bloom filters

September 15, 2022 Git at GitHub Scale, Git Merge 2022 @ttaylorr

commit-graphs &

changed-path Bloom filters
• git blame runtimes, p99 through p9999

• ~40% reduction p999

• fewer timeouts in p9999

September 15, 2022 Git at GitHub Scale, Git Merge 2022 @ttaylorr

• git blame-tree runtimes, p99 through p9999

• 3.5s -> 2s p998

• fewer timeouts p999, p9999

commit-graphs &

changed-path Bloom filters

September 15, 2022 Git at GitHub Scale, Git Merge 2022 @ttaylorr

commit-graphs & git blame-tree
• git blame-tree is a custom command that provides a tree-level blame

September 15, 2022 Git at GitHub Scale, Git Merge 2022 @ttaylorr

commit-graphs & git blame-tree
• Existing algorithm:

• Until all paths are blamed, walk along history and compute a tree-level diff at
each level

• New algorithm:

• Only compute a tree-level diff for unblamed paths

• Skip over parts of history where possible with Bloom filters

• Pass unblamed paths to parent(s)

• Collaboration between Derrick Stolee and myself

September 15, 2022 Git at GitHub Scale, Git Merge 2022 @ttaylorr

• git blame-tree runtimes, p99 through p9999

• further reduction p998, 4s -> 2s

• p999, p9999 timeout reduction

commit-graphs &

git blame-tree

September 15, 2022 Git at GitHub Scale, Git Merge 2022 @ttaylorr

Partial clones

September 15, 2022 Git at GitHub Scale, Git Merge 2022 @ttaylorr

Partial clones
• Ability to clone specific part(s) of your repository

• Dictated by different --filter options when cloning

• Developed upstream by Jeff Hostetler and Jonathan Tan

• Integrated with bitmaps by GitHub

September 15, 2022 Git at GitHub Scale, Git Merge 2022 @ttaylorr

Partial clones

$ best-of-five -p 'rm -rf linux.git' \

 sh -c 'git clone --bare \

 git@github.com:torvalds/linux.git’

Attempt 1: 283.75

Attempt 2: 283.97

Attempt 3: 297.601

Attempt 4: 299.141

Attempt 5: 323.365

real	4m43.750s

user	5m23.133s

sys	 1m5.691s

•full clone runtime 4m43s

September 15, 2022 Git at GitHub Scale, Git Merge 2022 @ttaylorr

Partial clones

$ best-of-five -p 'rm -rf linux.git' \

 sh -c 'git clone --bare --filter=blob:none \

 git@github.com:torvalds/linux.git’

Attempt 1: 124.282

Attempt 2: 127.547

Attempt 3: 134.818

Attempt 4: 125.464

Attempt 5: 117.205

real	1m57.205s

user	1m16.124s

sys	 0m25.912s

•full clone runtime 4m43s

•partial clone runtime 1m57s

September 15, 2022 Git at GitHub Scale, Git Merge 2022 @ttaylorr

merge-ort

September 15, 2022 Git at GitHub Scale, Git Merge 2022 @ttaylorr

• Elijah’s talk explained many/all of the details here

• Merges are computed proactively/manually in the web UI

merge-ort

September 15, 2022 Git at GitHub Scale, Git Merge 2022 @ttaylorr

merge-ort

September 15, 2022 Git at GitHub Scale, Git Merge 2022 @ttaylorr

• merge-recursive requires working copy to represent conflicts

• originally created a temporary working copy to perform a merge

• then implemented merges in libgit2 to eliminate the need for a working copy

• git merge-tree gained the ability to do “server-side” merges

• Collaboration between Johannes Schindelin and Elijah Newren

• now merge-ort powers merges on GitHub.com

• Work here done by Johannes Schindelin and Greg Hurrell

merge-ort

September 15, 2022 Git at GitHub Scale, Git Merge 2022 @ttaylorr

September 15, 2022 Git at GitHub Scale, Git Merge 2022 @ttaylorr

GitHub ➡ Git

September 15, 2022 Git at GitHub Scale, Git Merge 2022 @ttaylorr

GitHub
features in
upstream Git

multi-pack reachability bitmaps

On-disk reverse indexes

Geometric repacking

Cruft packs

September 15, 2022 Git at GitHub Scale, Git Merge 2022 @ttaylorr

multi-pack reachability
bitmaps

September 15, 2022 Git at GitHub Scale, Git Merge 2022 @ttaylorr

• Each time a repository is pushed to, a new pack is added to the repository

• As more packs are added, performance degrades over time

• To keep repositories running smoothly, schedule a periodic “maintenance”
routine on active and/or under-maintained repositories

• Maintenance compacts all objects into a single pack

Packs & maintenance

September 15, 2022 Git at GitHub Scale, Git Merge 2022 @ttaylorr

• Running something similar to git repack -adk —write-bitmap-index.

• Why a single pack?

• Any operation which performs object lookups needs only to consult a single
pack (+ any loose object, of which there are generally few)

• Key point: reachability bitmaps.

Repository maintenance

September 15, 2022 Git at GitHub Scale, Git Merge 2022 @ttaylorr

• Reachability bitmaps allow us to quickly answer: “what object(s) are reachable
from this commit?”

• Eliminates the need for object traversal, which is unbounded

• Can be combined in intuitive ways:

• The union of reachable objects among multiple bitmaps is a bitwise-OR

• The set difference (e.g., for haves and wants) is a bitwise-AND/NOT

Reachability bitmaps

September 15, 2022 Git at GitHub Scale, Git Merge 2022 @ttaylorr

Reachability
bitmaps

Image credit: Vicent Martí, GitHub

September 15, 2022 Git at GitHub Scale, Git Merge 2022 @ttaylorr

Reachability bitmap limitations
• Problem: can only encode information about objects in a single pack

• Requires us to repack all objects in a repository into a single pack

• Prohibitively expensive as repositories accumulate more and more objects

September 15, 2022 Git at GitHub Scale, Git Merge 2022 @ttaylorr

multi-pack index (MIDX)
• (Partial-)solution: multi-index index (MIDX)

• Upstream feature contributed by Derrick Stolee

• Acts like a single index over multiple packfiles

September 15, 2022 Git at GitHub Scale, Git Merge 2022 @ttaylorr

multi-pack index (MIDX)

September 15, 2022 Git at GitHub Scale, Git Merge 2022 @ttaylorr

MIDX pseudo-pack order
• Could we define an object order over the objects in a MIDX that we then use to

generate a bitmap?

• If so:

• Could repack a repository into arbitrary pack structure

• Write a MIDX containing just the packs we want to keep

• Write a bitmap covering the objects over those packs

September 15, 2022 Git at GitHub Scale, Git Merge 2022 @ttaylorr

MIDX pseudo-pack order

September 15, 2022 Git at GitHub Scale, Git Merge 2022 @ttaylorr

MIDX pseudo-pack order
• How to map bit #5 to

blue object?

• Could use number of
objects in each pack to
find the pack-relative
position in pack-abc.

• Problem: need to know
unique object count in
each pack.

• Red object is only
stored once.

• Need something better.

September 15, 2022 Git at GitHub Scale, Git Merge 2022 @ttaylorr

On-disk reverse indexes

September 15, 2022 Git at GitHub Scale, Git Merge 2022 @ttaylorr

Packs, indexes, reverse indexes
• Packs (*.pack files) contain a continuous sequence of objects in a

(semi-)arbitrary order

• Indexes (*.idx files) map objects in lexicographic order to their offset in the
corresponding .pack file

• Conceptually, reverse indexes map objects in their pack order to lexicographic
order

September 15, 2022 Git at GitHub Scale, Git Merge 2022 @ttaylorr

Reverse indexes
• Reverse indexes already exist in Git

• E.g., git cat-file --batch-check=‘%(objectsize:disk)’

• Computed on-the-fly by (radix) sorting an array of (object_id, offset)
pairs

• Works, and uses an efficient sort

• But still takes time proportional to the number of packed objects

• Memory intensive

• GitHub had an on-disk version of this as an optional extension in the .bitmap
file

September 15, 2022 Git at GitHub Scale, Git Merge 2022 @ttaylorr

Reverse indexes
• Bitcache extension

• Appears at the end of a .bitmap file as an optional extension

• Table of 4-byte (unsigned) integers, each corresponding to a packed object

• Stored in pack order (corresponding to objects by ascending pack offsets)

• Value is the lexicographic index for each object

• Could upstream this, and use it for multi-pack reachability bitmaps

• But requires using a bitmap to be useful

September 15, 2022 Git at GitHub Scale, Git Merge 2022 @ttaylorr

.rev files
• Instead, implement a new on-disk format used outside of the .bitmap file

• Called .rev, corresponds to both packs and MIDXs

• For packs, can be used with or without bitmaps

• For MIDXs, not useful without a bitmap

September 15, 2022 Git at GitHub Scale, Git Merge 2022 @ttaylorr

.rev files
• Instead, implement a new on-disk

format used outside of the .bitmap
file

• Called .rev, corresponds to both
packs and MIDXs

• For packs, can be used with or
without bitmaps

• For MIDXs, requires a bitmap

September 15, 2022 Git at GitHub Scale, Git Merge 2022 @ttaylorr

.rev files at GitHub
git pack-objects p50 CPU time,

(Homebrew/homebrew-core)

September 15, 2022 Git at GitHub Scale, Git Merge 2022 @ttaylorr

git fetch p50-p99 CPU time,

(all repos in one site)

.rev files at GitHub

September 15, 2022 Git at GitHub Scale, Git Merge 2022 @ttaylorr

MIDX .rev files

September 15, 2022 Git at GitHub Scale, Git Merge 2022 @ttaylorr

MIDX .rev files
• Define a pseudo-pack order:

• Objects in pack-order

• Arrange packs according to how
new they are

• Eliminate duplicate objects,
resolve in favor of a “preferred”
pack

• Store this order in a .rev file for the
MIDX

• Can translate from bit positions by
reading the corresponding entry

September 15, 2022 Git at GitHub Scale, Git Merge 2022 @ttaylorr

Geometric repacking

September 15, 2022 Git at GitHub Scale, Git Merge 2022 @ttaylorr

Geometric repacking
• Now that we can repack a repository into arbitrary structure(s)… what strategy

should we use?

• Want two properties:

• On average, usually few packs remain after repacking

• On average, work is proportional to number of new objects since previous
maintenance

• Simplest approach that captures the above two: make each remaining pack
have twice the number of objects as the next-largest pack

September 15, 2022 Git at GitHub Scale, Git Merge 2022 @ttaylorr

Geometric repacking
• First, organize packs by their object count in ascending order

• Then, determine how many large packs are already in progression

• Adjust based on rolling up remaining packs

September 15, 2022 Git at GitHub Scale, Git Merge 2022 @ttaylorr

Geometric repacking

September 15, 2022 Git at GitHub Scale, Git Merge 2022 @ttaylorr

Geometric repacking

September 15, 2022 Git at GitHub Scale, Git Merge 2022 @ttaylorr

Geometric repacking

September 15, 2022 Git at GitHub Scale, Git Merge 2022 @ttaylorr

September 15, 2022 Git at GitHub Scale, Git Merge 2022 @ttaylorr

5.67 CPU-days
saved every hour on GitHub.com

September 15, 2022 Git at GitHub Scale, Git Merge 2022 @ttaylorr

Cruft packs

September 15, 2022 Git at GitHub Scale, Git Merge 2022 @ttaylorr

Unreachable objects

September 15, 2022 Git at GitHub Scale, Git Merge 2022 @ttaylorr

Unreachable objects at GitHub
• Lots of unreachable objects in repositories on GitHub

• Test-merges

• Force-pushes

• Branch deletions

• Usually let these grow without bound

September 15, 2022 Git at GitHub Scale, Git Merge 2022 @ttaylorr

Pruning unreachable objects
• Unreachable objects left alone by default

• Occasionally users request manual cleanup, and we run .gc <repo> in chat

• This causes us to run something along the lines of: 
git repack -Adn --unpack-unreachable=5.minutes.ago

• Moves reachable objects into one pack

• Removes unreachable objects (older than 5 minutes)

• Loosens remaining unreachable objects

September 15, 2022 Git at GitHub Scale, Git Merge 2022 @ttaylorr

Pruning raciness
git gc decides commit C is

unreachable

commit C is removed

C is made reachable via a
reference update

git push

C advertised

Packfile dependent on C is sent

Objects depending on C enter the
repository

September 15, 2022 Git at GitHub Scale, Git Merge 2022 @ttaylorr

Pruning unreachable objects
• Unreachable objects which are too recent to be pruned are stored loose

• The mtime of each loose object file tracks the object’s “age”

• Writing the object sets the mtime to be “now”.

September 15, 2022 Git at GitHub Scale, Git Merge 2022 @ttaylorr

Pruning unreachable objects
• Storing unreachable objects loose can result in creating many files, especially in

large/active repositories with many unreachable objects

• Has a handful of other drawbacks

• Pairs of unreachable objects do not share their contents

• Having too many files can lead to performance problems, including inode
exhaustion

• Any operation which scans loose objects slows, eventually becoming
unusable

September 15, 2022 Git at GitHub Scale, Git Merge 2022 @ttaylorr

Cruft packs

September 15, 2022 Git at GitHub Scale, Git Merge 2022 @ttaylorr

Generating cruft packs
• Two cases:

• With object expiration

• First mark all reachable objects, pack those separately

• Then examine remaining unreachable objects, pack those separately
along with their mtimes

• Without object expiration

• Same as above, but only pack recent unreachable objects

• Before packing, traverse unreachable objects to rescue any stale objects
that are reachable from recent objects

September 15, 2022 Git at GitHub Scale, Git Merge 2022 @ttaylorr

Generating cruft packs

(without object expiration)

September 15, 2022 Git at GitHub Scale, Git Merge 2022 @ttaylorr

Generating cruft packs (without object
expiration)

September 15, 2022 Git at GitHub Scale, Git Merge 2022 @ttaylorr

Generating cruft packs (without object
expiration)

September 15, 2022 Git at GitHub Scale, Git Merge 2022 @ttaylorr

Generating cruft packs (with object
expiration)
• Same procedure, except want

to keep unreachable clusters
of objects around

• Easy if all connected clusters
will/won’t be pruned

• But tricky if some objects in a
cluster are pruned and others
aren’t

• Solution: rescuing pass to
save unreachable but
reachable-from-recent
objects

September 15, 2022 Git at GitHub Scale, Git Merge 2022 @ttaylorr

Cruft packs at GitHub
• Typically use geometric repacking eight out of every nine maintenance runs

• Ninth maintenance job collects repositories into a reachable and cruft pack

• Normal maintenance jobs does not prune objects

• (e.g., git repack --cruft -dn --write-bitmap-index)

• GitHub Support can respond to requests by running .gc <repo> in chat

• (e.g., git repack --cruft --cruft-expiration=1.minute.ago
-dn --write-bitmap-index)

September 15, 2022 Git at GitHub Scale, Git Merge 2022 @ttaylorr

Limbo repositories
• But we still have the advertise-then-prune race from earlier

• Idea: don’t eliminate this race entirely, but instead make it easy to recover from

• Joint work with Michael Haggerty and Torsten Walter

• In particular, move all unreachable objects to a “limbo” repository instead of
deleting

• Then git fsck the repository to make sure no races occurred (ie., that the
repository is non-corrupt)

• Restore objects from the limbo repository

• Then remove the limbo repository

September 15, 2022 Git at GitHub Scale, Git Merge 2022 @ttaylorr

Limbo repositories
• Limbo repository is “just another cruft pack” with a couple of tweaks

• Cruft pack excludes all objects in the new reachable and cruft packs of the
main repository

• And does not prune, so all objects are picked up

• This is every object that would be pruned during GC

• Pack is written to a separate repository with experimental --expire-to option

• RFC patches on the mailing list

September 15, 2022 Git at GitHub Scale, Git Merge 2022 @ttaylorr

Recap

September 15, 2022 Git at GitHub Scale, Git Merge 2022 @ttaylorr

Recap
• Git is a reliable, fast, secure implementation that can be relied upon at GitHub

scale.

• GitHub uses features from upstream Git, including partial clone, commit-graph,
and the MIDX.

• GitHub contributes tools that it writes back to the ecosystem, including MIDX
bitmaps, cruft packs, and more.

• The same tools that power GitHub can (and do!) run on your laptop.

