
Verifying Strong Eventual Consistency
in δ-CRDTs

Taylor Blau

University of Washington

June, 2020

Taylor Blau (University of Washington) Verifying Strong Eventual Consistency in δ-CRDTs June, 2020 1 / 50

Introduction

Contributions

This thesis:

Mechanized proofs in Isabelle that two δ-state CRDTs inhabit SEC.

Reuse a library for verifying operation-based CRDTs of Victor Gomes of Cambridge to reason
about δ-state CRDTs.
Weaken the network model of Gomes’ to support duplicated messages.

Two reductions that allow us to reason about δ-state CRDTs in terms of operation-based
CRDTs.

Two encodings of the latter reduction.

Taylor Blau (University of Washington) Verifying Strong Eventual Consistency in δ-CRDTs June, 2020 2 / 50

Introduction

Contributions

This thesis:

Mechanized proofs in Isabelle that two δ-state CRDTs inhabit SEC.

Reuse a library for verifying operation-based CRDTs of Victor Gomes of Cambridge to reason
about δ-state CRDTs.
Weaken the network model of Gomes’ to support duplicated messages.

Two reductions that allow us to reason about δ-state CRDTs in terms of operation-based
CRDTs.

Two encodings of the latter reduction.

Taylor Blau (University of Washington) Verifying Strong Eventual Consistency in δ-CRDTs June, 2020 2 / 50

Introduction

Contributions

This thesis:

Mechanized proofs in Isabelle that two δ-state CRDTs inhabit SEC.

Reuse a library for verifying operation-based CRDTs of Victor Gomes of Cambridge to reason
about δ-state CRDTs.
Weaken the network model of Gomes’ to support duplicated messages.

Two reductions that allow us to reason about δ-state CRDTs in terms of operation-based
CRDTs.

Two encodings of the latter reduction.

Taylor Blau (University of Washington) Verifying Strong Eventual Consistency in δ-CRDTs June, 2020 2 / 50

Introduction

Contributions

This thesis:

Mechanized proofs in Isabelle that two δ-state CRDTs inhabit SEC.

Reuse a library for verifying operation-based CRDTs of Victor Gomes of Cambridge to reason
about δ-state CRDTs.
Weaken the network model of Gomes’ to support duplicated messages.

Two reductions that allow us to reason about δ-state CRDTs in terms of operation-based
CRDTs.

Two encodings of the latter reduction.

Taylor Blau (University of Washington) Verifying Strong Eventual Consistency in δ-CRDTs June, 2020 2 / 50

Introduction

Contributions

This thesis:

Mechanized proofs in Isabelle that two δ-state CRDTs inhabit SEC.

Reuse a library for verifying operation-based CRDTs of Victor Gomes of Cambridge to reason
about δ-state CRDTs.
Weaken the network model of Gomes’ to support duplicated messages.

Two reductions that allow us to reason about δ-state CRDTs in terms of operation-based
CRDTs.

Two encodings of the latter reduction.

Taylor Blau (University of Washington) Verifying Strong Eventual Consistency in δ-CRDTs June, 2020 2 / 50

Introduction

This talk

Why distributed systems?

Consistency models: classic approaches and relaxed approximations.

CRDTs: operation-, state- and δ-state based, and the trade-offs each makes.

Reductions between CRDT variants.

Mechanized proofs in two encodings.

Conclusion.

Taylor Blau (University of Washington) Verifying Strong Eventual Consistency in δ-CRDTs June, 2020 3 / 50

Introduction

This talk

Why distributed systems?

Consistency models: classic approaches and relaxed approximations.

CRDTs: operation-, state- and δ-state based, and the trade-offs each makes.

Reductions between CRDT variants.

Mechanized proofs in two encodings.

Conclusion.

Taylor Blau (University of Washington) Verifying Strong Eventual Consistency in δ-CRDTs June, 2020 3 / 50

Introduction

This talk

Why distributed systems?

Consistency models: classic approaches and relaxed approximations.

CRDTs: operation-, state- and δ-state based, and the trade-offs each makes.

Reductions between CRDT variants.

Mechanized proofs in two encodings.

Conclusion.

Taylor Blau (University of Washington) Verifying Strong Eventual Consistency in δ-CRDTs June, 2020 3 / 50

Introduction

This talk

Why distributed systems?

Consistency models: classic approaches and relaxed approximations.

CRDTs: operation-, state- and δ-state based, and the trade-offs each makes.

Reductions between CRDT variants.

Mechanized proofs in two encodings.

Conclusion.

Taylor Blau (University of Washington) Verifying Strong Eventual Consistency in δ-CRDTs June, 2020 3 / 50

Introduction

This talk

Why distributed systems?

Consistency models: classic approaches and relaxed approximations.

CRDTs: operation-, state- and δ-state based, and the trade-offs each makes.

Reductions between CRDT variants.

Mechanized proofs in two encodings.

Conclusion.

Taylor Blau (University of Washington) Verifying Strong Eventual Consistency in δ-CRDTs June, 2020 3 / 50

Introduction

This talk

Why distributed systems?

Consistency models: classic approaches and relaxed approximations.

CRDTs: operation-, state- and δ-state based, and the trade-offs each makes.

Reductions between CRDT variants.

Mechanized proofs in two encodings.

Conclusion.

Taylor Blau (University of Washington) Verifying Strong Eventual Consistency in δ-CRDTs June, 2020 3 / 50

Motivation

Distributed Systems

Why distributed systems?

1 Resiliency. Tolerates failure of any one (or more) participants.

2 Scalability. Meeting the demands of an increased workload as simple as adding more
hardware.

3 Locality. Service requests to varied locations by placing hardware close to where requests
originate.

Taylor Blau (University of Washington) Verifying Strong Eventual Consistency in δ-CRDTs June, 2020 4 / 50

Motivation

Distributed Systems

Why distributed systems?

1 Resiliency. Tolerates failure of any one (or more) participants.

2 Scalability. Meeting the demands of an increased workload as simple as adding more
hardware.

3 Locality. Service requests to varied locations by placing hardware close to where requests
originate.

Taylor Blau (University of Washington) Verifying Strong Eventual Consistency in δ-CRDTs June, 2020 4 / 50

Motivation

Distributed Systems

Why distributed systems?

1 Resiliency. Tolerates failure of any one (or more) participants.

2 Scalability. Meeting the demands of an increased workload as simple as adding more
hardware.

3 Locality. Service requests to varied locations by placing hardware close to where requests
originate.

Taylor Blau (University of Washington) Verifying Strong Eventual Consistency in δ-CRDTs June, 2020 4 / 50

Motivation

Distributed Consensus Algorithms

Definition (Distributed Consensus Algorithm, Howard and Mortier [2020])

An algorithm is said to solve distributed consensus if it has the following three safety
requirements:

1 Non-triviality: The decided value must have been proposed by a participant.

2 Safety: Once a value has been decided, no other value will be decided.

3 Safe learning: If a participant learns a value, it must learn the decided value.

In addition, it must satisfy the following two progress requirements:

1 Progress: Under previously agreed-upon liveness conditions, if a value is proposed by a
participant, then a value is eventually decided.

2 Eventual learning: Under the same conditions as above, if a value is decided, then that
value must be eventually learned.

Taylor Blau (University of Washington) Verifying Strong Eventual Consistency in δ-CRDTs June, 2020 5 / 50

Motivation

Distributed Consensus Algorithms

Definition (Distributed Consensus Algorithm, Howard and Mortier [2020])

An algorithm is said to solve distributed consensus if it has the following three safety
requirements:

1 Non-triviality: The decided value must have been proposed by a participant.

2 Safety: Once a value has been decided, no other value will be decided.

3 Safe learning: If a participant learns a value, it must learn the decided value.

In addition, it must satisfy the following two progress requirements:

1 Progress: Under previously agreed-upon liveness conditions, if a value is proposed by a
participant, then a value is eventually decided.

2 Eventual learning: Under the same conditions as above, if a value is decided, then that
value must be eventually learned.

Taylor Blau (University of Washington) Verifying Strong Eventual Consistency in δ-CRDTs June, 2020 5 / 50

Motivation

Distributed Consensus Algorithms

Definition (Distributed Consensus Algorithm, Howard and Mortier [2020])

An algorithm is said to solve distributed consensus if it has the following three safety
requirements:

1 Non-triviality: The decided value must have been proposed by a participant.

2 Safety: Once a value has been decided, no other value will be decided.

3 Safe learning: If a participant learns a value, it must learn the decided value.

In addition, it must satisfy the following two progress requirements:

1 Progress: Under previously agreed-upon liveness conditions, if a value is proposed by a
participant, then a value is eventually decided.

2 Eventual learning: Under the same conditions as above, if a value is decided, then that
value must be eventually learned.

Taylor Blau (University of Washington) Verifying Strong Eventual Consistency in δ-CRDTs June, 2020 5 / 50

Motivation

Distributed Consensus Algorithms

Definition (Distributed Consensus Algorithm, Howard and Mortier [2020])

An algorithm is said to solve distributed consensus if it has the following three safety
requirements:

1 Non-triviality: The decided value must have been proposed by a participant.

2 Safety: Once a value has been decided, no other value will be decided.

3 Safe learning: If a participant learns a value, it must learn the decided value.

In addition, it must satisfy the following two progress requirements:

1 Progress: Under previously agreed-upon liveness conditions, if a value is proposed by a
participant, then a value is eventually decided.

2 Eventual learning: Under the same conditions as above, if a value is decided, then that
value must be eventually learned.

Taylor Blau (University of Washington) Verifying Strong Eventual Consistency in δ-CRDTs June, 2020 5 / 50

Motivation

Distributed Consensus Algorithms

Definition (Distributed Consensus Algorithm, Howard and Mortier [2020])

An algorithm is said to solve distributed consensus if it has the following three safety
requirements:

1 Non-triviality: The decided value must have been proposed by a participant.

2 Safety: Once a value has been decided, no other value will be decided.

3 Safe learning: If a participant learns a value, it must learn the decided value.

In addition, it must satisfy the following two progress requirements:

1 Progress: Under previously agreed-upon liveness conditions, if a value is proposed by a
participant, then a value is eventually decided.

2 Eventual learning: Under the same conditions as above, if a value is decided, then that
value must be eventually learned.

Taylor Blau (University of Washington) Verifying Strong Eventual Consistency in δ-CRDTs June, 2020 5 / 50

Motivation

Distributed Consensus Algorithms

Definition (Distributed Consensus Algorithm, Howard and Mortier [2020])

An algorithm is said to solve distributed consensus if it has the following three safety
requirements:

1 Non-triviality: The decided value must have been proposed by a participant.

2 Safety: Once a value has been decided, no other value will be decided.

3 Safe learning: If a participant learns a value, it must learn the decided value.

In addition, it must satisfy the following two progress requirements:

1 Progress: Under previously agreed-upon liveness conditions, if a value is proposed by a
participant, then a value is eventually decided.

2 Eventual learning: Under the same conditions as above, if a value is decided, then that
value must be eventually learned.

Taylor Blau (University of Washington) Verifying Strong Eventual Consistency in δ-CRDTs June, 2020 5 / 50

Motivation

Distributed Consensus Algorithms

Two of the most popular algorithms in this field:

Paxos [Lamport, 1998]

Raft [Ongaro and Ousterhout, 2014]

...are notoriously difficult to implement in practice [Howard and Mortier, 2020].

Often the subject of advanced undergraduate-level courses in Distributed Systems (CSE
452).

Subject of much mechanized verification effort [Wilcox et al., 2015, Woos et al., 2016].

Taylor Blau (University of Washington) Verifying Strong Eventual Consistency in δ-CRDTs June, 2020 6 / 50

Motivation

Distributed Consensus Algorithms

Two of the most popular algorithms in this field:

Paxos [Lamport, 1998]

Raft [Ongaro and Ousterhout, 2014]

...are notoriously difficult to implement in practice [Howard and Mortier, 2020].

Often the subject of advanced undergraduate-level courses in Distributed Systems (CSE
452).

Subject of much mechanized verification effort [Wilcox et al., 2015, Woos et al., 2016].

Taylor Blau (University of Washington) Verifying Strong Eventual Consistency in δ-CRDTs June, 2020 6 / 50

Motivation

Distributed Consensus Algorithms

Two of the most popular algorithms in this field:

Paxos [Lamport, 1998]

Raft [Ongaro and Ousterhout, 2014]

...are notoriously difficult to implement in practice [Howard and Mortier, 2020].

Often the subject of advanced undergraduate-level courses in Distributed Systems (CSE
452).

Subject of much mechanized verification effort [Wilcox et al., 2015, Woos et al., 2016].

Taylor Blau (University of Washington) Verifying Strong Eventual Consistency in δ-CRDTs June, 2020 6 / 50

Motivation

Distributed Consensus Algorithms

Two of the most popular algorithms in this field:

Paxos [Lamport, 1998]

Raft [Ongaro and Ousterhout, 2014]

...are notoriously difficult to implement in practice [Howard and Mortier, 2020].

Often the subject of advanced undergraduate-level courses in Distributed Systems (CSE
452).

Subject of much mechanized verification effort [Wilcox et al., 2015, Woos et al., 2016].

Taylor Blau (University of Washington) Verifying Strong Eventual Consistency in δ-CRDTs June, 2020 6 / 50

Motivation

Distributed Consensus Algorithms

Why? ...one possible answer: safety.

1 Coordinating a shared value between multiple replicas is difficult.

2 Unreliable networks make this task even more difficult.

3 Ensuring that all nodes learn the same value makes this even more difficult still.

Taylor Blau (University of Washington) Verifying Strong Eventual Consistency in δ-CRDTs June, 2020 7 / 50

Motivation

Distributed Consensus Algorithms

Why? ...one possible answer: safety.

1 Coordinating a shared value between multiple replicas is difficult.

2 Unreliable networks make this task even more difficult.

3 Ensuring that all nodes learn the same value makes this even more difficult still.

Taylor Blau (University of Washington) Verifying Strong Eventual Consistency in δ-CRDTs June, 2020 7 / 50

Motivation

Distributed Consensus Algorithms

Why? ...one possible answer: safety.

1 Coordinating a shared value between multiple replicas is difficult.

2 Unreliable networks make this task even more difficult.

3 Ensuring that all nodes learn the same value makes this even more difficult still.

Taylor Blau (University of Washington) Verifying Strong Eventual Consistency in δ-CRDTs June, 2020 7 / 50

Motivation

Distributed Consensus Algorithms

Why? ...one possible answer: safety.

1 Coordinating a shared value between multiple replicas is difficult.

2 Unreliable networks make this task even more difficult.

3 Ensuring that all nodes learn the same value makes this even more difficult still.

Taylor Blau (University of Washington) Verifying Strong Eventual Consistency in δ-CRDTs June, 2020 7 / 50

Background Consistency Classes

Eventual Consistency

Eventual consistency captures the informal notion that if all clients stop submitting updates to
the system, all replicas in the system eventually reach the same value.
More formally:

Definition (Eventual Consistency [Shapiro et al., 2011])

1 Eventual delivery. An update delivered at some correct replica is eventually delivered at
all replicas.

∀r1, r2. f ∈ (delivered r1)⇒ ♦f ∈ (delivered r2)

2 Convergence. Correct replicas which have received the same set of updates eventually
reflect the same state.

∀r1, r2. � (delivered r1) = (delivered r2)⇒ ♦ � q(r1) = q(r2)

3 Termination. All method executions terminate.

Taylor Blau (University of Washington) Verifying Strong Eventual Consistency in δ-CRDTs June, 2020 8 / 50

Background Consistency Classes

Eventual Consistency

Eventual consistency captures the informal notion that if all clients stop submitting updates to
the system, all replicas in the system eventually reach the same value.
More formally:

Definition (Eventual Consistency [Shapiro et al., 2011])

1 Eventual delivery. An update delivered at some correct replica is eventually delivered at
all replicas.

∀r1, r2. f ∈ (delivered r1)⇒ ♦f ∈ (delivered r2)

2 Convergence. Correct replicas which have received the same set of updates eventually
reflect the same state.

∀r1, r2. � (delivered r1) = (delivered r2)⇒ ♦ � q(r1) = q(r2)

3 Termination. All method executions terminate.

Taylor Blau (University of Washington) Verifying Strong Eventual Consistency in δ-CRDTs June, 2020 8 / 50

Background Consistency Classes

Eventual Consistency

Eventual consistency captures the informal notion that if all clients stop submitting updates to
the system, all replicas in the system eventually reach the same value.
More formally:

Definition (Eventual Consistency [Shapiro et al., 2011])

1 Eventual delivery. An update delivered at some correct replica is eventually delivered at
all replicas.

∀r1, r2. f ∈ (delivered r1)⇒ ♦f ∈ (delivered r2)

2 Convergence. Correct replicas which have received the same set of updates eventually
reflect the same state.

∀r1, r2. � (delivered r1) = (delivered r2)⇒ ♦ � q(r1) = q(r2)

3 Termination. All method executions terminate.

Taylor Blau (University of Washington) Verifying Strong Eventual Consistency in δ-CRDTs June, 2020 8 / 50

Background Consistency Classes

Eventual Consistency

Eventual consistency captures the informal notion that if all clients stop submitting updates to
the system, all replicas in the system eventually reach the same value.
More formally:

Definition (Eventual Consistency [Shapiro et al., 2011])

1 Eventual delivery. An update delivered at some correct replica is eventually delivered at
all replicas.

∀r1, r2. f ∈ (delivered r1)⇒ ♦f ∈ (delivered r2)

2 Convergence. Correct replicas which have received the same set of updates eventually
reflect the same state.

∀r1, r2. � (delivered r1) = (delivered r2)⇒ ♦ � q(r1) = q(r2)

3 Termination. All method executions terminate.

Taylor Blau (University of Washington) Verifying Strong Eventual Consistency in δ-CRDTs June, 2020 8 / 50

Background Consistency Classes

Shortcomings of Eventual Consistency

EC is a relatively weak form of consistency:

1 EC systems will sometimes execute an update immediately only to discover that it
produces a conflict with some future update, and so frequent roll-backs may be
performed [Shapiro et al., 2011].

2 EC is merely a liveness guarantee. It does not impose any restriction on nodes which have
received the same set or even sequence of messages.

Taylor Blau (University of Washington) Verifying Strong Eventual Consistency in δ-CRDTs June, 2020 9 / 50

Background Consistency Classes

Shortcomings of Eventual Consistency

EC is a relatively weak form of consistency:

1 EC systems will sometimes execute an update immediately only to discover that it
produces a conflict with some future update, and so frequent roll-backs may be
performed [Shapiro et al., 2011].

2 EC is merely a liveness guarantee. It does not impose any restriction on nodes which have
received the same set or even sequence of messages.

Taylor Blau (University of Washington) Verifying Strong Eventual Consistency in δ-CRDTs June, 2020 9 / 50

Background Consistency Classes

Strong Eventual Consistency

Definition (Strong Eventual Consistency [Shapiro et al., 2011])

1 The system is EC, as previously described.

2 Strong convergence. Any pair of replicas which have received the same set of messages
must return the same value when queried immediately.

∀r1, r2. (delivered r1) = (delivered r2)⇒ q(r1) = q(r2)

Taylor Blau (University of Washington) Verifying Strong Eventual Consistency in δ-CRDTs June, 2020 10 / 50

Background Consistency Classes

Strong Eventual Consistency

Definition (Strong Eventual Consistency [Shapiro et al., 2011])

1 The system is EC, as previously described.

2 Strong convergence. Any pair of replicas which have received the same set of messages
must return the same value when queried immediately.

∀r1, r2. (delivered r1) = (delivered r2)⇒ q(r1) = q(r2)

Taylor Blau (University of Washington) Verifying Strong Eventual Consistency in δ-CRDTs June, 2020 10 / 50

Background Consistency Classes

Strong Eventual Consistency

Why is SEC an appealing model?

No requirements on replicas which have not received the same sequence/set of updates.

Trade linearizability for the ability to let replicas drift.

Allow replicas which haven’t yet received all updates to return an earlier value of the
computation.

Practical (in certain applications): offline synchronization (iOS Notes), Facebook “like”
counters, Cassandra, etc.

Taylor Blau (University of Washington) Verifying Strong Eventual Consistency in δ-CRDTs June, 2020 11 / 50

Background Consistency Classes

Strong Eventual Consistency

Why is SEC an appealing model?

No requirements on replicas which have not received the same sequence/set of updates.

Trade linearizability for the ability to let replicas drift.

Allow replicas which haven’t yet received all updates to return an earlier value of the
computation.

Practical (in certain applications): offline synchronization (iOS Notes), Facebook “like”
counters, Cassandra, etc.

Taylor Blau (University of Washington) Verifying Strong Eventual Consistency in δ-CRDTs June, 2020 11 / 50

Background Consistency Classes

Strong Eventual Consistency

Why is SEC an appealing model?

No requirements on replicas which have not received the same sequence/set of updates.

Trade linearizability for the ability to let replicas drift.

Allow replicas which haven’t yet received all updates to return an earlier value of the
computation.

Practical (in certain applications): offline synchronization (iOS Notes), Facebook “like”
counters, Cassandra, etc.

Taylor Blau (University of Washington) Verifying Strong Eventual Consistency in δ-CRDTs June, 2020 11 / 50

Background Consistency Classes

Strong Eventual Consistency

Why is SEC an appealing model?

No requirements on replicas which have not received the same sequence/set of updates.

Trade linearizability for the ability to let replicas drift.

Allow replicas which haven’t yet received all updates to return an earlier value of the
computation.

Practical (in certain applications): offline synchronization (iOS Notes), Facebook “like”
counters, Cassandra, etc.

Taylor Blau (University of Washington) Verifying Strong Eventual Consistency in δ-CRDTs June, 2020 11 / 50

Background Consistency Classes

Strong Eventual Consistency

Why is SEC an appealing model?

No requirements on replicas which have not received the same sequence/set of updates.

Trade linearizability for the ability to let replicas drift.

Allow replicas which haven’t yet received all updates to return an earlier value of the
computation.

Practical (in certain applications): offline synchronization (iOS Notes), Facebook “like”
counters, Cassandra, etc.

Taylor Blau (University of Washington) Verifying Strong Eventual Consistency in δ-CRDTs June, 2020 11 / 50

Background Conflict-free Replicated Datatypes

Conflict-free Replicated Datatypes

CRDTs are a class of replicated datatypes which implement SEC Shapiro et al. [2011]. There
exist two broad classes:

1 State-based CRDTs. States form a join lattice, progress is made by sharing states with
other replicas and merging with local state.

2 Operation-based CRDTs. Operations are serialized and delivered to all replicas in order.

Taylor Blau (University of Washington) Verifying Strong Eventual Consistency in δ-CRDTs June, 2020 12 / 50

Background Conflict-free Replicated Datatypes

Conflict-free Replicated Datatypes

CRDTs are a class of replicated datatypes which implement SEC Shapiro et al. [2011]. There
exist two broad classes:

1 State-based CRDTs. States form a join lattice, progress is made by sharing states with
other replicas and merging with local state.

2 Operation-based CRDTs. Operations are serialized and delivered to all replicas in order.

Taylor Blau (University of Washington) Verifying Strong Eventual Consistency in δ-CRDTs June, 2020 12 / 50

Background state-based CRDTs

State-based CRDTs

A state-based CRDT is a 5-tuple (S , s0, q, u,m):

1 Individual CRDT replicas each have some state s i ∈ S for i ≥ 0, and is initially s0.

2 The value may be queried by any client or other replica by invoking q.

3 It may be updated with u, which has a unique type per CRDT object.

4 Finally, m merges the state of some other remote replica.

Taylor Blau (University of Washington) Verifying Strong Eventual Consistency in δ-CRDTs June, 2020 13 / 50

Background state-based CRDTs

Example state-based CRDT

Grow-only counter: increments a (grow-only) shared value over time, supports queries of the
last-known value.

G-Counters =

S : N|I|
0

s0 : [0, 0, · · · , 0]

q : λs.
∑
i∈I

s(i)

u : λs, i . s {i 7→ s(i) + 1}
m : λs1, s2. [max {s1(i), s2(i)} : i ∈ dom(s1) ∪ dom(s2)]

Taylor Blau (University of Washington) Verifying Strong Eventual Consistency in δ-CRDTs June, 2020 14 / 50

Background state-based CRDTs

state-based properties

1 Crucially, the states of a given state-based CRDT form a partially-ordered set 〈S ,v〉.
This poset is used to form a join semi-lattice, where any finite subset of elements has a
natural least upper-bound.

2 For every state-based CRDT whose states S form some join semi-lattice (with join
operator t), we assume that:

m(s1, s2) = s1 t s2

Taylor Blau (University of Washington) Verifying Strong Eventual Consistency in δ-CRDTs June, 2020 15 / 50

Background state-based CRDTs

state-based properties

1 Crucially, the states of a given state-based CRDT form a partially-ordered set 〈S ,v〉.
This poset is used to form a join semi-lattice, where any finite subset of elements has a
natural least upper-bound.

2 For every state-based CRDT whose states S form some join semi-lattice (with join
operator t), we assume that:

m(s1, s2) = s1 t s2

Taylor Blau (University of Washington) Verifying Strong Eventual Consistency in δ-CRDTs June, 2020 15 / 50

Background state-based CRDTs

state-based properties of t

t must satisfy three mathematical identities:

The operator is commutative, i.e., that s1 t s2 = s2 t s1, or that order does not matter.

The operator is idempotent, i.e., that (s1 t s2) t s2 = s1 t s2, or that repeated updates
reach a fixed point.

Finally, the operator is associative, i.e., that s1 t (s2 t s3) = (s1 t s2) t s3, or that
grouping of arguments does not matter.

Taylor Blau (University of Washington) Verifying Strong Eventual Consistency in δ-CRDTs June, 2020 16 / 50

Background state-based CRDTs

state-based properties of t

t must satisfy three mathematical identities:

The operator is commutative, i.e., that s1 t s2 = s2 t s1, or that order does not matter.

The operator is idempotent, i.e., that (s1 t s2) t s2 = s1 t s2, or that repeated updates
reach a fixed point.

Finally, the operator is associative, i.e., that s1 t (s2 t s3) = (s1 t s2) t s3, or that
grouping of arguments does not matter.

Taylor Blau (University of Washington) Verifying Strong Eventual Consistency in δ-CRDTs June, 2020 16 / 50

Background state-based CRDTs

state-based properties of t

t must satisfy three mathematical identities:

The operator is commutative, i.e., that s1 t s2 = s2 t s1, or that order does not matter.

The operator is idempotent, i.e., that (s1 t s2) t s2 = s1 t s2, or that repeated updates
reach a fixed point.

Finally, the operator is associative, i.e., that s1 t (s2 t s3) = (s1 t s2) t s3, or that
grouping of arguments does not matter.

Taylor Blau (University of Washington) Verifying Strong Eventual Consistency in δ-CRDTs June, 2020 16 / 50

Background state-based CRDTs

state-based properties of t

t must satisfy three mathematical identities:

The operator is commutative, i.e., that s1 t s2 = s2 t s1, or that order does not matter.

The operator is idempotent, i.e., that (s1 t s2) t s2 = s1 t s2, or that repeated updates
reach a fixed point.

Finally, the operator is associative, i.e., that s1 t (s2 t s3) = (s1 t s2) t s3, or that
grouping of arguments does not matter.

Taylor Blau (University of Washington) Verifying Strong Eventual Consistency in δ-CRDTs June, 2020 16 / 50

Background state-based CRDTs

state-based properties of t

...why place these restrictions on t? Because:

Commutativity means that updates can be delivered from other replicas in any order.

Idempotency means that updates can be delivered any number of times without changing
the effect.

Associativity means that updates can be applied in any grouping (useful for
causality-preserving CRDTs, but not studied further here).

Taylor Blau (University of Washington) Verifying Strong Eventual Consistency in δ-CRDTs June, 2020 17 / 50

Background state-based CRDTs

state-based properties of t

...why place these restrictions on t? Because:

Commutativity means that updates can be delivered from other replicas in any order.

Idempotency means that updates can be delivered any number of times without changing
the effect.

Associativity means that updates can be applied in any grouping (useful for
causality-preserving CRDTs, but not studied further here).

Taylor Blau (University of Washington) Verifying Strong Eventual Consistency in δ-CRDTs June, 2020 17 / 50

Background state-based CRDTs

state-based properties of t

...why place these restrictions on t? Because:

Commutativity means that updates can be delivered from other replicas in any order.

Idempotency means that updates can be delivered any number of times without changing
the effect.

Associativity means that updates can be applied in any grouping (useful for
causality-preserving CRDTs, but not studied further here).

Taylor Blau (University of Washington) Verifying Strong Eventual Consistency in δ-CRDTs June, 2020 17 / 50

Background state-based CRDTs

state-based properties of t

...why place these restrictions on t? Because:

Commutativity means that updates can be delivered from other replicas in any order.

Idempotency means that updates can be delivered any number of times without changing
the effect.

Associativity means that updates can be applied in any grouping (useful for
causality-preserving CRDTs, but not studied further here).

Taylor Blau (University of Washington) Verifying Strong Eventual Consistency in δ-CRDTs June, 2020 17 / 50

Background state-based CRDTs

Example state-based CRDT

Grow-only counter: increments a (grow-only) shared value over time, supports queries of the
last-known value.

G-Counters =

S : N|I|
0 Each element in the lattice a vector of naturals.

s0 : [0, 0, · · · , 0]

q : λs.
∑
i∈I

s(i)

u : λs, i . s {i 7→ s(i) + 1}
m : λs1, s2. [max {s1(i), s2(i)} : i ∈ dom(s1) ∪ dom(s2)]

Least upper bound t defined by the element-wise maximum.

Taylor Blau (University of Washington) Verifying Strong Eventual Consistency in δ-CRDTs June, 2020 18 / 50

Background state-based CRDTs

Example state-based CRDT

Grow-only counter: increments a (grow-only) shared value over time, supports queries of the
last-known value.

G-Counters =

S : N|I|
0 Each element in the lattice a vector of naturals.

s0 : [0, 0, · · · , 0]

q : λs.
∑
i∈I

s(i)

u : λs, i . s {i 7→ s(i) + 1}
m : λs1, s2. [max {s1(i), s2(i)} : i ∈ dom(s1) ∪ dom(s2)]

Least upper bound t defined by the element-wise maximum.

Taylor Blau (University of Washington) Verifying Strong Eventual Consistency in δ-CRDTs June, 2020 18 / 50

Background state-based CRDTs

Example state-based CRDT

Grow-only counter: increments a (grow-only) shared value over time, supports queries of the
last-known value.

G-Counters =

S : N|I|
0 Each element in the lattice a vector of naturals.

s0 : [0, 0, · · · , 0]

q : λs.
∑
i∈I

s(i)

u : λs, i . s {i 7→ s(i) + 1}
m : λs1, s2. [max {s1(i), s2(i)} : i ∈ dom(s1) ∪ dom(s2)]

Least upper bound t defined by the element-wise maximum.

Taylor Blau (University of Washington) Verifying Strong Eventual Consistency in δ-CRDTs June, 2020 18 / 50

Background state-based CRDTs

Example state-based CRDT

Grow-only set: replicated monotonic (supports ∪, but not \) set, query q defines a unary
relation over items in the set.

G-Sets(X) =

S : P(X) Each element in the latice is some subset of X .

s0 : {}
q : λx . x ∈ s

u : λx . s ∪ {x} The set is updated by replacing the current set with the union.

m : λs1, s2. s1 ∪ s2 The union of sets defines a least-upper bound in the lattice.

The lattice-of-sets (for some family of items X) is 〈P(X),⊆〉, and the least-upper bound is
defined by ∪.

Taylor Blau (University of Washington) Verifying Strong Eventual Consistency in δ-CRDTs June, 2020 19 / 50

Background state-based CRDTs

Example state-based CRDT

Grow-only set: replicated monotonic (supports ∪, but not \) set, query q defines a unary
relation over items in the set.

G-Sets(X) =

S : P(X) Each element in the latice is some subset of X .

s0 : {}
q : λx . x ∈ s

u : λx . s ∪ {x} The set is updated by replacing the current set with the union.

m : λs1, s2. s1 ∪ s2 The union of sets defines a least-upper bound in the lattice.

The lattice-of-sets (for some family of items X) is 〈P(X),⊆〉, and the least-upper bound is
defined by ∪.

Taylor Blau (University of Washington) Verifying Strong Eventual Consistency in δ-CRDTs June, 2020 19 / 50

Background state-based CRDTs

Example state-based CRDT

Grow-only set: replicated monotonic (supports ∪, but not \) set, query q defines a unary
relation over items in the set.

G-Sets(X) =

S : P(X) Each element in the latice is some subset of X .

s0 : {}
q : λx . x ∈ s

u : λx . s ∪ {x} The set is updated by replacing the current set with the union.

m : λs1, s2. s1 ∪ s2 The union of sets defines a least-upper bound in the lattice.

The lattice-of-sets (for some family of items X) is 〈P(X),⊆〉, and the least-upper bound is
defined by ∪.

Taylor Blau (University of Washington) Verifying Strong Eventual Consistency in δ-CRDTs June, 2020 19 / 50

Background op-based CRDTs

op-based CRDTs

An op-based CRDT is a 6-tuple (S , s0, q, t, u,P).

S , s0, and q retain the same meaning as for the state-based CRDTs.

S need not necessairly form a semi-lattice.

Operations are communicated instead of state. To deliver an operation:
1 The prepare-update implementation t is applied at the locally to prepare a representation of

the operation.
2 The effect-update implementation u is applied at the local and remote replicas if and only if

the delivery precondition P is met, causing the desired update to take effect.

Taylor Blau (University of Washington) Verifying Strong Eventual Consistency in δ-CRDTs June, 2020 20 / 50

Background op-based CRDTs

op-based CRDTs

An op-based CRDT is a 6-tuple (S , s0, q, t, u,P).

S , s0, and q retain the same meaning as for the state-based CRDTs.

S need not necessairly form a semi-lattice.

Operations are communicated instead of state. To deliver an operation:
1 The prepare-update implementation t is applied at the locally to prepare a representation of

the operation.
2 The effect-update implementation u is applied at the local and remote replicas if and only if

the delivery precondition P is met, causing the desired update to take effect.

Taylor Blau (University of Washington) Verifying Strong Eventual Consistency in δ-CRDTs June, 2020 20 / 50

Background op-based CRDTs

op-based CRDTs

An op-based CRDT is a 6-tuple (S , s0, q, t, u,P).

S , s0, and q retain the same meaning as for the state-based CRDTs.

S need not necessairly form a semi-lattice.

Operations are communicated instead of state. To deliver an operation:
1 The prepare-update implementation t is applied at the locally to prepare a representation of

the operation.
2 The effect-update implementation u is applied at the local and remote replicas if and only if

the delivery precondition P is met, causing the desired update to take effect.

Taylor Blau (University of Washington) Verifying Strong Eventual Consistency in δ-CRDTs June, 2020 20 / 50

Background op-based CRDTs

op-based CRDTs

An op-based CRDT is a 6-tuple (S , s0, q, t, u,P).

S , s0, and q retain the same meaning as for the state-based CRDTs.

S need not necessairly form a semi-lattice.

Operations are communicated instead of state. To deliver an operation:
1 The prepare-update implementation t is applied at the locally to prepare a representation of

the operation.
2 The effect-update implementation u is applied at the local and remote replicas if and only if

the delivery precondition P is met, causing the desired update to take effect.

Taylor Blau (University of Washington) Verifying Strong Eventual Consistency in δ-CRDTs June, 2020 20 / 50

Background op-based CRDTs

op-based CRDTs

An op-based CRDT is a 6-tuple (S , s0, q, t, u,P).

S , s0, and q retain the same meaning as for the state-based CRDTs.

S need not necessairly form a semi-lattice.

Operations are communicated instead of state. To deliver an operation:
1 The prepare-update implementation t is applied at the locally to prepare a representation of

the operation.
2 The effect-update implementation u is applied at the local and remote replicas if and only if

the delivery precondition P is met, causing the desired update to take effect.

Taylor Blau (University of Washington) Verifying Strong Eventual Consistency in δ-CRDTs June, 2020 20 / 50

Background op-based CRDTs

Example op-based CRDT

To illustrate the difference between state- and op-based CRDTs, here the analogue to G-Sets :

G-Seto(X) =

S : P(X)

s0 : {}
q : λx . x ∈ s

t : λx . (ins, x) Representation of the operation.

u : λp. s ∪ {(snd p)} Application of the operation.

Taylor Blau (University of Washington) Verifying Strong Eventual Consistency in δ-CRDTs June, 2020 21 / 50

Background op-based CRDTs

Example op-based CRDT

To illustrate the difference between state- and op-based CRDTs, here the analogue to G-Sets :

G-Seto(X) =

S : P(X)

s0 : {}
q : λx . x ∈ s

t : λx . (ins, x) Representation of the operation.

u : λp. s ∪ {(snd p)} Application of the operation.

Taylor Blau (University of Washington) Verifying Strong Eventual Consistency in δ-CRDTs June, 2020 21 / 50

Background op-based CRDTs

Example op-based CRDT

To illustrate the difference between state- and op-based CRDTs, here the analogue to G-Sets :

G-Seto(X) =

S : P(X)

s0 : {}
q : λx . x ∈ s

t : λx . (ins, x) Representation of the operation.

u : λp. s ∪ {(snd p)} Application of the operation.

Taylor Blau (University of Washington) Verifying Strong Eventual Consistency in δ-CRDTs June, 2020 21 / 50

Background op-based CRDTs

Example op-based CRDT

To illustrate the difference between state- and op-based CRDTs, here the analogue to
G-Counters :

G-Counter′o =

S : N|I|
0

s0 : [0, 0, · · · , 0]

q : λs.
∑
i∈I

s(i)

t : (inc, i)

u : λs, p. s{i 7→ s(i) + 1}

G-Countero =

S : N0

s0 : 0

q : λs. s

t : inc

u : λs, p. s + 1

Taylor Blau (University of Washington) Verifying Strong Eventual Consistency in δ-CRDTs June, 2020 22 / 50

Background op-based CRDTs

Example op-based CRDT

To illustrate the difference between state- and op-based CRDTs, here the analogue to
G-Counters :

G-Counter′o =

S : N|I|
0

s0 : [0, 0, · · · , 0]

q : λs.
∑
i∈I

s(i)

t : (inc, i)

u : λs, p. s{i 7→ s(i) + 1}

G-Countero =

S : N0

s0 : 0

q : λs. s

t : inc

u : λs, p. s + 1

Taylor Blau (University of Washington) Verifying Strong Eventual Consistency in δ-CRDTs June, 2020 22 / 50

Background op-based CRDTs

Example op-based CRDT

To illustrate the difference between state- and op-based CRDTs, here the analogue to
G-Counters :

G-Counter′o =

S : N|I|
0

s0 : [0, 0, · · · , 0]

q : λs.
∑
i∈I

s(i)

t : (inc, i)

u : λs, p. s{i 7→ s(i) + 1}

G-Countero =

S : N0

s0 : 0

q : λs. s

t : inc

u : λs, p. s + 1

Taylor Blau (University of Washington) Verifying Strong Eventual Consistency in δ-CRDTs June, 2020 22 / 50

Background op-based CRDTs

op- and state-based trade-offs

state-based CRDTs are resilient to degenerate network behaviors, such as delaying,
dropping, and reordering messages in transit, but suffer from large payload size

op-based CRDTs have relatively small payload size, but require that the network deliver
messages at-most-once

Is there a middle ground?

Taylor Blau (University of Washington) Verifying Strong Eventual Consistency in δ-CRDTs June, 2020 23 / 50

Background op-based CRDTs

op- and state-based trade-offs

state-based CRDTs are resilient to degenerate network behaviors, such as delaying,
dropping, and reordering messages in transit, but suffer from large payload size

op-based CRDTs have relatively small payload size, but require that the network deliver
messages at-most-once

Is there a middle ground?

Taylor Blau (University of Washington) Verifying Strong Eventual Consistency in δ-CRDTs June, 2020 23 / 50

Background op-based CRDTs

op- and state-based trade-offs

state-based CRDTs are resilient to degenerate network behaviors, such as delaying,
dropping, and reordering messages in transit, but suffer from large payload size

op-based CRDTs have relatively small payload size, but require that the network deliver
messages at-most-once

Is there a middle ground?

Taylor Blau (University of Washington) Verifying Strong Eventual Consistency in δ-CRDTs June, 2020 23 / 50

Background op-based CRDTs

op- and state-based trade-offs

state-based CRDTs are resilient to degenerate network behaviors, such as delaying,
dropping, and reordering messages in transit, but suffer from large payload size

op-based CRDTs have relatively small payload size, but require that the network deliver
messages at-most-once

Is there a middle ground?

Taylor Blau (University of Washington) Verifying Strong Eventual Consistency in δ-CRDTs June, 2020 23 / 50

δ-state CRDTs

δ-state CRDTs

Like state-based CRDTs, a δ-state CRDT is a 5-tuple: (S , s0, q, uδ,mδ) [Almeida et al., 2018].

uδ produces an δ-mutation, which is representative of the update.

mδ is capable of merging a state s ∈ S with the δ-mutation produced by uδ.

Goal: the size of a δ mutation should be smaller than the state.

Taylor Blau (University of Washington) Verifying Strong Eventual Consistency in δ-CRDTs June, 2020 24 / 50

δ-state CRDTs

Example δ-state CRDT

Recall the original state-based G-Set, and consider how it might be represented as a δ-state
CRDT:

G-Sets(X) =

S : P(X)

s0 : {}
q : λx . x ∈ s

u : λx . s ∪ {x}
m : λs1, s2. s1 ∪ s2

Observe that both u : S → S → S and uδ : S → S → S .

Standard requirement from Almeida et al. [2018] (they let S for the G-Counter be
S : I ↪→ N).

Not a requirement in this work.

Taylor Blau (University of Washington) Verifying Strong Eventual Consistency in δ-CRDTs June, 2020 25 / 50

δ-state CRDTs

Example δ-state CRDT

Recall the original state-based G-Set, and consider how it might be represented as a δ-state
CRDT:

G-Setδ(X) =

S : P(X)

s0 : {}
q : λx . x ∈ s

uδ : λx . {x}
mδ : λs1, s2. s1 ∪ s2

Observe that both u : S → S → S and uδ : S → S → S .

Standard requirement from Almeida et al. [2018] (they let S for the G-Counter be
S : I ↪→ N).

Not a requirement in this work.

Taylor Blau (University of Washington) Verifying Strong Eventual Consistency in δ-CRDTs June, 2020 25 / 50

δ-state CRDTs

Example δ-state CRDT

Recall the original state-based G-Set, and consider how it might be represented as a δ-state
CRDT:

G-Setδ(X) =

S : P(X)

s0 : {}
q : λx . x ∈ s

uδ : λx . {x}
mδ : λs1, s2. s1 ∪ s2

Observe that both u : S → S → S and uδ : S → S → S .

Standard requirement from Almeida et al. [2018] (they let S for the G-Counter be
S : I ↪→ N).

Not a requirement in this work.

Taylor Blau (University of Washington) Verifying Strong Eventual Consistency in δ-CRDTs June, 2020 25 / 50

δ-state CRDTs

Example δ-state CRDT

Recall the original state-based G-Set, and consider how it might be represented as a δ-state
CRDT:

G-Setδ(X) =

S : P(X)

s0 : {}
q : λx . x ∈ s

uδ : λx . {x}
mδ : λs1, s2. s1 ∪ s2

Observe that both u : S → S → S and uδ : S → S → S .

Standard requirement from Almeida et al. [2018] (they let S for the G-Counter be
S : I ↪→ N).

Not a requirement in this work.

Taylor Blau (University of Washington) Verifying Strong Eventual Consistency in δ-CRDTs June, 2020 25 / 50

δ-state CRDTs

Example δ-state CRDT

Recall the original state-based G-Set, and consider how it might be represented as a δ-state
CRDT:

G-Setδ(X) =

S : P(X)

s0 : {}
q : λx . x ∈ s

uδ : λx . {x}
mδ : λs1, s2. s1 ∪ s2

Observe that both u : S → S → S and uδ : S → S → S .

Standard requirement from Almeida et al. [2018] (they let S for the G-Counter be
S : I ↪→ N).

Not a requirement in this work.

Taylor Blau (University of Washington) Verifying Strong Eventual Consistency in δ-CRDTs June, 2020 25 / 50

δ-state CRDTs

Example δ-state CRDT (G-Counter)

Let’s consider the state- and δ-state encodings of the G-Counter:

G-Counters =

S : N|I|
0

s0 : [0, 0, · · · , 0]

q : λs.
∑
i∈I

s(i)

u : λs, i . s {i 7→ s(i) + 1}
m : λs1, s2. [max {s1(i), s2(i)} : i ∈ dom(s1) ∪ dom(s2)]

Use the notation {i 7→ x} to encode an update (index, new value) in the vector.

Taylor Blau (University of Washington) Verifying Strong Eventual Consistency in δ-CRDTs June, 2020 26 / 50

δ-state CRDTs

Example δ-state CRDT (G-Counter)

Let’s consider the state- and δ-state encodings of the G-Counter:

G-Counters =

S : N|I|
0

s0 : [0, 0, · · · , 0]

q : λs.
∑
i∈I

s(i)

u : λs, i . s {i 7→ s(i) + 1}
m : λs1, s2. [max {s1(i), s2(i)} : i ∈ dom(s1) ∪ dom(s2)]

Use the notation {i 7→ x} to encode an update (index, new value) in the vector.

Taylor Blau (University of Washington) Verifying Strong Eventual Consistency in δ-CRDTs June, 2020 26 / 50

δ-state CRDTs

Example δ-state CRDT (G-Counter)

Let’s consider the state- and δ-state encodings of the G-Counter:

G-Counterδ =

S : N|I|
0

s0 : [0, 0, · · · , 0]

q : λs.
∑
i∈I

s(i)

uδ : λs, i . {i 7→ s(i) + 1}
mδ : λs1, s2. [max {s1(i), s2(i)} : i ∈ dom(s1) ∪ dom(s2)]

Use the notation {i 7→ x} to encode an update (index, new value) in the vector.

Taylor Blau (University of Washington) Verifying Strong Eventual Consistency in δ-CRDTs June, 2020 26 / 50

δ-state CRDTs

SEC & δ-CRDTs?

1 We have a “best-of-both-worlds” CRDT: the δ-state CRDT.

2 Small update payload (more like O(size of update) instead of O(|I|)).

3 mδ is still elegant: commutative, associative, and idempotent ⇒ weak network
requirements (opposed to op-based CRDTs).

Big question: does it satisfy SEC?

Taylor Blau (University of Washington) Verifying Strong Eventual Consistency in δ-CRDTs June, 2020 27 / 50

δ-state CRDTs

SEC & δ-CRDTs?

1 We have a “best-of-both-worlds” CRDT: the δ-state CRDT.

2 Small update payload (more like O(size of update) instead of O(|I|)).

3 mδ is still elegant: commutative, associative, and idempotent ⇒ weak network
requirements (opposed to op-based CRDTs).

Big question: does it satisfy SEC?

Taylor Blau (University of Washington) Verifying Strong Eventual Consistency in δ-CRDTs June, 2020 27 / 50

δ-state CRDTs

SEC & δ-CRDTs?

1 We have a “best-of-both-worlds” CRDT: the δ-state CRDT.

2 Small update payload (more like O(size of update) instead of O(|I|)).

3 mδ is still elegant: commutative, associative, and idempotent ⇒ weak network
requirements (opposed to op-based CRDTs).

Big question: does it satisfy SEC?

Taylor Blau (University of Washington) Verifying Strong Eventual Consistency in δ-CRDTs June, 2020 27 / 50

δ-state CRDTs

SEC & δ-CRDTs?

1 We have a “best-of-both-worlds” CRDT: the δ-state CRDT.

2 Small update payload (more like O(size of update) instead of O(|I|)).

3 mδ is still elegant: commutative, associative, and idempotent ⇒ weak network
requirements (opposed to op-based CRDTs).

Big question: does it satisfy SEC?

Taylor Blau (University of Washington) Verifying Strong Eventual Consistency in δ-CRDTs June, 2020 27 / 50

δ-state CRDTs

SEC & δ-CRDTs?

1 We have a “best-of-both-worlds” CRDT: the δ-state CRDT.

2 Small update payload (more like O(size of update) instead of O(|I|)).

3 mδ is still elegant: commutative, associative, and idempotent ⇒ weak network
requirements (opposed to op-based CRDTs).

Big question: does it satisfy SEC?

Taylor Blau (University of Washington) Verifying Strong Eventual Consistency in δ-CRDTs June, 2020 27 / 50

δ-state CRDTs

The rest of the talk

1 Answer the question of “do δ-state CRDTs achieve SEC?” in the affirmative, with a
mechanically checked proof.

2 Build our proofs on the work of Gomes et al. [2017], verification library in Isabelle/HOL
for op-based CRDTs.

3 State two reductions for viewing state- and δ-state based CRDTs as op-based.

4 Overview of our proofs.

5 Future directions.

Taylor Blau (University of Washington) Verifying Strong Eventual Consistency in δ-CRDTs June, 2020 28 / 50

δ-state CRDTs

The rest of the talk

1 Answer the question of “do δ-state CRDTs achieve SEC?” in the affirmative, with a
mechanically checked proof.

2 Build our proofs on the work of Gomes et al. [2017], verification library in Isabelle/HOL
for op-based CRDTs.

3 State two reductions for viewing state- and δ-state based CRDTs as op-based.

4 Overview of our proofs.

5 Future directions.

Taylor Blau (University of Washington) Verifying Strong Eventual Consistency in δ-CRDTs June, 2020 28 / 50

δ-state CRDTs

The rest of the talk

1 Answer the question of “do δ-state CRDTs achieve SEC?” in the affirmative, with a
mechanically checked proof.

2 Build our proofs on the work of Gomes et al. [2017], verification library in Isabelle/HOL
for op-based CRDTs.

3 State two reductions for viewing state- and δ-state based CRDTs as op-based.

4 Overview of our proofs.

5 Future directions.

Taylor Blau (University of Washington) Verifying Strong Eventual Consistency in δ-CRDTs June, 2020 28 / 50

δ-state CRDTs

The rest of the talk

1 Answer the question of “do δ-state CRDTs achieve SEC?” in the affirmative, with a
mechanically checked proof.

2 Build our proofs on the work of Gomes et al. [2017], verification library in Isabelle/HOL
for op-based CRDTs.

3 State two reductions for viewing state- and δ-state based CRDTs as op-based.

4 Overview of our proofs.

5 Future directions.

Taylor Blau (University of Washington) Verifying Strong Eventual Consistency in δ-CRDTs June, 2020 28 / 50

δ-state CRDTs

The rest of the talk

1 Answer the question of “do δ-state CRDTs achieve SEC?” in the affirmative, with a
mechanically checked proof.

2 Build our proofs on the work of Gomes et al. [2017], verification library in Isabelle/HOL
for op-based CRDTs.

3 State two reductions for viewing state- and δ-state based CRDTs as op-based.

4 Overview of our proofs.

5 Future directions.

Taylor Blau (University of Washington) Verifying Strong Eventual Consistency in δ-CRDTs June, 2020 28 / 50

CRDT reductions

Reduction I: state- to op-based

We have a type mismatch: want to verify properties of δ-state CRDTs, but library is designed
for verifying op-based CRDTs.

Design a reduction from δ-state CRDTs to op-based.

Convince ourselves of its correctness.

Encode δ-state CRDTs as op-based in Isabelle, write proofs over the encoded CRDTs.

Two reductions: state- to op-based, then δ- to op-based.

Call these φstate→op and φδ→op, respectively.

First is a “warm-up” to illustrate the general shape of these reductions.

Latter is the reduction we use in our proofs.

Taylor Blau (University of Washington) Verifying Strong Eventual Consistency in δ-CRDTs June, 2020 29 / 50

CRDT reductions

Reduction I: state- to op-based

We have a type mismatch: want to verify properties of δ-state CRDTs, but library is designed
for verifying op-based CRDTs.

Design a reduction from δ-state CRDTs to op-based.

Convince ourselves of its correctness.

Encode δ-state CRDTs as op-based in Isabelle, write proofs over the encoded CRDTs.

Two reductions: state- to op-based, then δ- to op-based.

Call these φstate→op and φδ→op, respectively.

First is a “warm-up” to illustrate the general shape of these reductions.

Latter is the reduction we use in our proofs.

Taylor Blau (University of Washington) Verifying Strong Eventual Consistency in δ-CRDTs June, 2020 29 / 50

CRDT reductions

Reduction I: state- to op-based

We have a type mismatch: want to verify properties of δ-state CRDTs, but library is designed
for verifying op-based CRDTs.

Design a reduction from δ-state CRDTs to op-based.

Convince ourselves of its correctness.

Encode δ-state CRDTs as op-based in Isabelle, write proofs over the encoded CRDTs.

Two reductions: state- to op-based, then δ- to op-based.

Call these φstate→op and φδ→op, respectively.

First is a “warm-up” to illustrate the general shape of these reductions.

Latter is the reduction we use in our proofs.

Taylor Blau (University of Washington) Verifying Strong Eventual Consistency in δ-CRDTs June, 2020 29 / 50

CRDT reductions

Reduction I: state- to op-based

We have a type mismatch: want to verify properties of δ-state CRDTs, but library is designed
for verifying op-based CRDTs.

Design a reduction from δ-state CRDTs to op-based.

Convince ourselves of its correctness.

Encode δ-state CRDTs as op-based in Isabelle, write proofs over the encoded CRDTs.

Two reductions: state- to op-based, then δ- to op-based.

Call these φstate→op and φδ→op, respectively.

First is a “warm-up” to illustrate the general shape of these reductions.

Latter is the reduction we use in our proofs.

Taylor Blau (University of Washington) Verifying Strong Eventual Consistency in δ-CRDTs June, 2020 29 / 50

CRDT reductions

Reduction I: state- to op-based

We have a type mismatch: want to verify properties of δ-state CRDTs, but library is designed
for verifying op-based CRDTs.

Design a reduction from δ-state CRDTs to op-based.

Convince ourselves of its correctness.

Encode δ-state CRDTs as op-based in Isabelle, write proofs over the encoded CRDTs.

Two reductions: state- to op-based, then δ- to op-based.

Call these φstate→op and φδ→op, respectively.

First is a “warm-up” to illustrate the general shape of these reductions.

Latter is the reduction we use in our proofs.

Taylor Blau (University of Washington) Verifying Strong Eventual Consistency in δ-CRDTs June, 2020 29 / 50

CRDT reductions

Reduction I: state- to op-based

We have a type mismatch: want to verify properties of δ-state CRDTs, but library is designed
for verifying op-based CRDTs.

Design a reduction from δ-state CRDTs to op-based.

Convince ourselves of its correctness.

Encode δ-state CRDTs as op-based in Isabelle, write proofs over the encoded CRDTs.

Two reductions: state- to op-based, then δ- to op-based.

Call these φstate→op and φδ→op, respectively.

First is a “warm-up” to illustrate the general shape of these reductions.

Latter is the reduction we use in our proofs.

Taylor Blau (University of Washington) Verifying Strong Eventual Consistency in δ-CRDTs June, 2020 29 / 50

CRDT reductions

Reduction I: state- to op-based

We have a type mismatch: want to verify properties of δ-state CRDTs, but library is designed
for verifying op-based CRDTs.

Design a reduction from δ-state CRDTs to op-based.

Convince ourselves of its correctness.

Encode δ-state CRDTs as op-based in Isabelle, write proofs over the encoded CRDTs.

Two reductions: state- to op-based, then δ- to op-based.

Call these φstate→op and φδ→op, respectively.

First is a “warm-up” to illustrate the general shape of these reductions.

Latter is the reduction we use in our proofs.

Taylor Blau (University of Washington) Verifying Strong Eventual Consistency in δ-CRDTs June, 2020 29 / 50

CRDT reductions

Reduction I: state- to op-based

We have a type mismatch: want to verify properties of δ-state CRDTs, but library is designed
for verifying op-based CRDTs.

Design a reduction from δ-state CRDTs to op-based.

Convince ourselves of its correctness.

Encode δ-state CRDTs as op-based in Isabelle, write proofs over the encoded CRDTs.

Two reductions: state- to op-based, then δ- to op-based.

Call these φstate→op and φδ→op, respectively.

First is a “warm-up” to illustrate the general shape of these reductions.

Latter is the reduction we use in our proofs.

Taylor Blau (University of Washington) Verifying Strong Eventual Consistency in δ-CRDTs June, 2020 29 / 50

CRDT reductions

Reduction I: state- to op-based

Want a reduction of the following form:

φstate→op : (S , s0, q, u,m)︸ ︷︷ ︸
state-based CRDTs

−→ (S , s0, q, t, u,P)︸ ︷︷ ︸
op-based CRDTs

Simple idea:

Let state (specifically: S , s0, q) be identical under the reduction.1

Let t return the result of (the state-based) u.

Let u perform as (the state-based) m.

Let P always be enabled.

That is: let the op-based reduction of a state-based CRDT the CRDT which applies updates
by performing a state-based merge.

1Can often be more clever than this (for eg., op-based G-Counter, but simplifies the reduction.)
Taylor Blau (University of Washington) Verifying Strong Eventual Consistency in δ-CRDTs June, 2020 30 / 50

CRDT reductions

Reduction I: state- to op-based

Want a reduction of the following form:

φstate→op : (S , s0, q, u,m)︸ ︷︷ ︸
state-based CRDTs

−→ (S , s0, q, t, u,P)︸ ︷︷ ︸
op-based CRDTs

Simple idea:

Let state (specifically: S , s0, q) be identical under the reduction.1

Let t return the result of (the state-based) u.

Let u perform as (the state-based) m.

Let P always be enabled.

That is: let the op-based reduction of a state-based CRDT the CRDT which applies updates
by performing a state-based merge.

1Can often be more clever than this (for eg., op-based G-Counter, but simplifies the reduction.)
Taylor Blau (University of Washington) Verifying Strong Eventual Consistency in δ-CRDTs June, 2020 30 / 50

CRDT reductions

Reduction I: state- to op-based

Want a reduction of the following form:

φstate→op : (S , s0, q, u,m)︸ ︷︷ ︸
state-based CRDTs

−→ (S , s0, q, t, u,P)︸ ︷︷ ︸
op-based CRDTs

Simple idea:

Let state (specifically: S , s0, q) be identical under the reduction.1

Let t return the result of (the state-based) u.

Let u perform as (the state-based) m.

Let P always be enabled.

That is: let the op-based reduction of a state-based CRDT the CRDT which applies updates
by performing a state-based merge.

1Can often be more clever than this (for eg., op-based G-Counter, but simplifies the reduction.)
Taylor Blau (University of Washington) Verifying Strong Eventual Consistency in δ-CRDTs June, 2020 30 / 50

CRDT reductions

Reduction I: state- to op-based

Want a reduction of the following form:

φstate→op : (S , s0, q, u,m)︸ ︷︷ ︸
state-based CRDTs

−→ (S , s0, q, t, u,P)︸ ︷︷ ︸
op-based CRDTs

Simple idea:

Let state (specifically: S , s0, q) be identical under the reduction.1

Let t return the result of (the state-based) u.

Let u perform as (the state-based) m.

Let P always be enabled.

That is: let the op-based reduction of a state-based CRDT the CRDT which applies updates
by performing a state-based merge.

1Can often be more clever than this (for eg., op-based G-Counter, but simplifies the reduction.)
Taylor Blau (University of Washington) Verifying Strong Eventual Consistency in δ-CRDTs June, 2020 30 / 50

CRDT reductions

Reduction I: state- to op-based

Want a reduction of the following form:

φstate→op : (S , s0, q, u,m)︸ ︷︷ ︸
state-based CRDTs

−→ (S , s0, q, t, u,P)︸ ︷︷ ︸
op-based CRDTs

Simple idea:

Let state (specifically: S , s0, q) be identical under the reduction.1

Let t return the result of (the state-based) u.

Let u perform as (the state-based) m.

Let P always be enabled.

That is: let the op-based reduction of a state-based CRDT the CRDT which applies updates
by performing a state-based merge.

1Can often be more clever than this (for eg., op-based G-Counter, but simplifies the reduction.)
Taylor Blau (University of Washington) Verifying Strong Eventual Consistency in δ-CRDTs June, 2020 30 / 50

CRDT reductions

Reduction I: state- to op-based

Want a reduction of the following form:

φstate→op : (S , s0, q, u,m)︸ ︷︷ ︸
state-based CRDTs

−→ (S , s0, q, t, u,P)︸ ︷︷ ︸
op-based CRDTs

Simple idea:

Let state (specifically: S , s0, q) be identical under the reduction.1

Let t return the result of (the state-based) u.

Let u perform as (the state-based) m.

Let P always be enabled.

That is: let the op-based reduction of a state-based CRDT the CRDT which applies updates
by performing a state-based merge.

1Can often be more clever than this (for eg., op-based G-Counter, but simplifies the reduction.)
Taylor Blau (University of Washington) Verifying Strong Eventual Consistency in δ-CRDTs June, 2020 30 / 50

CRDT reductions

Reduction I: state- to op-based

Want a reduction of the following form:

φstate→op : (S , s0, q, u,m)︸ ︷︷ ︸
state-based CRDTs

−→ (S , s0, q, t, u,P)︸ ︷︷ ︸
op-based CRDTs

Simple idea:

Let state (specifically: S , s0, q) be identical under the reduction.1

Let t return the result of (the state-based) u.

Let u perform as (the state-based) m.

Let P always be enabled.

That is: let the op-based reduction of a state-based CRDT the CRDT which applies updates
by performing a state-based merge.

1Can often be more clever than this (for eg., op-based G-Counter, but simplifies the reduction.)
Taylor Blau (University of Washington) Verifying Strong Eventual Consistency in δ-CRDTs June, 2020 30 / 50

CRDT reductions

Reduction I: state- to op-based

Maxim

A state-based CRDT is an op-based CRDT where the prepare-update phase returns the
updated state, and the effect-update is a join of two states.

Taylor Blau (University of Washington) Verifying Strong Eventual Consistency in δ-CRDTs June, 2020 31 / 50

CRDT reductions

Reduction I: state- to op-based

Abstract conversion from a state- to op-based CRDT under φ:

C0 =

So : S

s0
o : s0

qo : q

to : λp. u(p...)

uo : λs2.m(st , s2)

Taylor Blau (University of Washington) Verifying Strong Eventual Consistency in δ-CRDTs June, 2020 32 / 50

CRDT reductions

Reduction I: state- to op-based

Abstract conversion from a state- to op-based CRDT under φ:

C0 =

So : S

s0
o : s0

qo : q

to : λp. u(p...)

uo : λs2.m(st , s2)

Taylor Blau (University of Washington) Verifying Strong Eventual Consistency in δ-CRDTs June, 2020 32 / 50

CRDT reductions

Reduction I: state- to op-based

Abstract conversion from a state- to op-based CRDT under φ:

C0 =

So : S

s0
o : s0

qo : q

to : λp. u(p...)

uo : λs2.m(st , s2)

Taylor Blau (University of Washington) Verifying Strong Eventual Consistency in δ-CRDTs June, 2020 32 / 50

CRDT reductions

Reduction I: state- to op-based

Abstract conversion from a state- to op-based CRDT under φ:

C0 =

So : S

s0
o : s0

qo : q

to : λp. u(p...)

uo : λs2.m(st , s2)

Taylor Blau (University of Washington) Verifying Strong Eventual Consistency in δ-CRDTs June, 2020 32 / 50

CRDT reductions

Reduction II: δ- to op-based

Want a reduction of the following form:

φδ→op : (S , s0, q, uδ,mδ)︸ ︷︷ ︸
δ-based CRDTs

−→ (S , s0, q, t, u,P)︸ ︷︷ ︸
op-based CRDTs

General idea:

Let S be the type of each state and T be the type of the δ-fragments.

Let t : S → S → T act like the difference between successive states.

Let u : S → T → S act like the pseudo-inverse of t which “unwinds” the state.

Let P be always enabled.

That is: let the op-based reduction of a δ-state CRDT be the CRDT which applies updates
over the δ-fragments of a state.

Taylor Blau (University of Washington) Verifying Strong Eventual Consistency in δ-CRDTs June, 2020 33 / 50

CRDT reductions

Reduction II: δ- to op-based

Want a reduction of the following form:

φδ→op : (S , s0, q, uδ,mδ)︸ ︷︷ ︸
δ-based CRDTs

−→ (S , s0, q, t, u,P)︸ ︷︷ ︸
op-based CRDTs

General idea:

Let S be the type of each state and T be the type of the δ-fragments.

Let t : S → S → T act like the difference between successive states.

Let u : S → T → S act like the pseudo-inverse of t which “unwinds” the state.

Let P be always enabled.

That is: let the op-based reduction of a δ-state CRDT be the CRDT which applies updates
over the δ-fragments of a state.

Taylor Blau (University of Washington) Verifying Strong Eventual Consistency in δ-CRDTs June, 2020 33 / 50

CRDT reductions

Reduction II: δ- to op-based

Want a reduction of the following form:

φδ→op : (S , s0, q, uδ,mδ)︸ ︷︷ ︸
δ-based CRDTs

−→ (S , s0, q, t, u,P)︸ ︷︷ ︸
op-based CRDTs

General idea:

Let S be the type of each state and T be the type of the δ-fragments.

Let t : S → S → T act like the difference between successive states.

Let u : S → T → S act like the pseudo-inverse of t which “unwinds” the state.

Let P be always enabled.

That is: let the op-based reduction of a δ-state CRDT be the CRDT which applies updates
over the δ-fragments of a state.

Taylor Blau (University of Washington) Verifying Strong Eventual Consistency in δ-CRDTs June, 2020 33 / 50

CRDT reductions

Reduction II: δ- to op-based

Want a reduction of the following form:

φδ→op : (S , s0, q, uδ,mδ)︸ ︷︷ ︸
δ-based CRDTs

−→ (S , s0, q, t, u,P)︸ ︷︷ ︸
op-based CRDTs

General idea:

Let S be the type of each state and T be the type of the δ-fragments.

Let t : S → S → T act like the difference between successive states.

Let u : S → T → S act like the pseudo-inverse of t which “unwinds” the state.

Let P be always enabled.

That is: let the op-based reduction of a δ-state CRDT be the CRDT which applies updates
over the δ-fragments of a state.

Taylor Blau (University of Washington) Verifying Strong Eventual Consistency in δ-CRDTs June, 2020 33 / 50

CRDT reductions

Reduction II: δ- to op-based

Want a reduction of the following form:

φδ→op : (S , s0, q, uδ,mδ)︸ ︷︷ ︸
δ-based CRDTs

−→ (S , s0, q, t, u,P)︸ ︷︷ ︸
op-based CRDTs

General idea:

Let S be the type of each state and T be the type of the δ-fragments.

Let t : S → S → T act like the difference between successive states.

Let u : S → T → S act like the pseudo-inverse of t which “unwinds” the state.

Let P be always enabled.

That is: let the op-based reduction of a δ-state CRDT be the CRDT which applies updates
over the δ-fragments of a state.

Taylor Blau (University of Washington) Verifying Strong Eventual Consistency in δ-CRDTs June, 2020 33 / 50

CRDT reductions

Reduction II: δ- to op-based

Want a reduction of the following form:

φδ→op : (S , s0, q, uδ,mδ)︸ ︷︷ ︸
δ-based CRDTs

−→ (S , s0, q, t, u,P)︸ ︷︷ ︸
op-based CRDTs

General idea:

Let S be the type of each state and T be the type of the δ-fragments.

Let t : S → S → T act like the difference between successive states.

Let u : S → T → S act like the pseudo-inverse of t which “unwinds” the state.

Let P be always enabled.

That is: let the op-based reduction of a δ-state CRDT be the CRDT which applies updates
over the δ-fragments of a state.

Taylor Blau (University of Washington) Verifying Strong Eventual Consistency in δ-CRDTs June, 2020 33 / 50

CRDT reductions

Reduction II: δ- to op-based

Want a reduction of the following form:

φδ→op : (S , s0, q, uδ,mδ)︸ ︷︷ ︸
δ-based CRDTs

−→ (S , s0, q, t, u,P)︸ ︷︷ ︸
op-based CRDTs

General idea:

Let S be the type of each state and T be the type of the δ-fragments.

Let t : S → S → T act like the difference between successive states.

Let u : S → T → S act like the pseudo-inverse of t which “unwinds” the state.

Let P be always enabled.

That is: let the op-based reduction of a δ-state CRDT be the CRDT which applies updates
over the δ-fragments of a state.

Taylor Blau (University of Washington) Verifying Strong Eventual Consistency in δ-CRDTs June, 2020 33 / 50

CRDT reductions

Reduction II: δ- to op-based

Maxim

A δ-state based CRDT is an op-based CRDT whose messages are δ-fragments, and whose
operation is a pseudo-join between the current state and the δ fragment.

Taylor Blau (University of Washington) Verifying Strong Eventual Consistency in δ-CRDTs June, 2020 34 / 50

CRDT reductions

Reduction II: δ- to op-based

Example: apply φδ→op to the δ-state G-Set.
Two questions:

1 What is the δ-fragment between two successive states ⇒ what is t?

2 How to “join” a δ-fragment with our current state ⇒ what is u?

Two answers:

1 Set difference.

2 Set union.

Taylor Blau (University of Washington) Verifying Strong Eventual Consistency in δ-CRDTs June, 2020 35 / 50

CRDT reductions

Reduction II: δ- to op-based

Example: apply φδ→op to the δ-state G-Set.
Two questions:

1 What is the δ-fragment between two successive states ⇒ what is t?

2 How to “join” a δ-fragment with our current state ⇒ what is u?

Two answers:

1 Set difference.

2 Set union.

Taylor Blau (University of Washington) Verifying Strong Eventual Consistency in δ-CRDTs June, 2020 35 / 50

CRDT reductions

Reduction II: δ- to op-based

Example: apply φδ→op to the δ-state G-Set.
Two questions:

1 What is the δ-fragment between two successive states ⇒ what is t?

2 How to “join” a δ-fragment with our current state ⇒ what is u?

Two answers:

1 Set difference.

2 Set union.

Taylor Blau (University of Washington) Verifying Strong Eventual Consistency in δ-CRDTs June, 2020 35 / 50

CRDT reductions

Reduction II: δ- to op-based

Example: apply φδ→op to the δ-state G-Set.
Two questions:

1 What is the δ-fragment between two successive states ⇒ what is t?

2 How to “join” a δ-fragment with our current state ⇒ what is u?

Two answers:

1 Set difference.

2 Set union.

Taylor Blau (University of Washington) Verifying Strong Eventual Consistency in δ-CRDTs June, 2020 35 / 50

CRDT reductions

Reduction II: δ- to op-based

Example: apply φδ→op to the δ-state G-Set.
Two questions:

1 What is the δ-fragment between two successive states ⇒ what is t?

2 How to “join” a δ-fragment with our current state ⇒ what is u?

Two answers:

1 Set difference.

2 Set union.

Taylor Blau (University of Washington) Verifying Strong Eventual Consistency in δ-CRDTs June, 2020 35 / 50

CRDT reductions

Reduction II: δ- to op-based

Let’s consider how φδ→op behaves on the G-Set CRDT:

φδ→op(G-Set(X)) =

S : P(X)

s0 : {}
q : λx . x ∈ s

t : λs1, s2. s2 \ s1

u : λs2. s ∪ s2

Example of reducing a δ-state CRDT to an op-based one where the type of the state and
δ-fragment are the same (ie., S = T = P(X)).

Taylor Blau (University of Washington) Verifying Strong Eventual Consistency in δ-CRDTs June, 2020 36 / 50

CRDT reductions

Reduction II: δ- to op-based

Let’s consider how φδ→op behaves on the G-Set CRDT:

φδ→op(G-Set(X)) =

S : P(X)

s0 : {}
q : λx . x ∈ s

t : λs1, s2. s2 \ s1

u : λs2. s ∪ s2

Example of reducing a δ-state CRDT to an op-based one where the type of the state and
δ-fragment are the same (ie., S = T = P(X)).

Taylor Blau (University of Washington) Verifying Strong Eventual Consistency in δ-CRDTs June, 2020 36 / 50

CRDT reductions

Reduction II: δ- to op-based

Let’s consider how φδ→op behaves on the G-Set CRDT:

φδ→op(G-Set(X)) =

S : P(X)

s0 : {}
q : λx . x ∈ s

t : λs1, s2. s2 \ s1

u : λs2. s ∪ s2

Example of reducing a δ-state CRDT to an op-based one where the type of the state and
δ-fragment are the same (ie., S = T = P(X)).

Taylor Blau (University of Washington) Verifying Strong Eventual Consistency in δ-CRDTs June, 2020 36 / 50

CRDT reductions

Reduction II: δ- to op-based

Let’s consider how φδ→op behaves on the G-Set CRDT:

φδ→op(G-Set(X)) =

S : P(X)

s0 : {}
q : λx . x ∈ s

t : λs1, s2. s2 \ s1

u : λs2. s ∪ s2

Example of reducing a δ-state CRDT to an op-based one where the type of the state and
δ-fragment are the same (ie., S = T = P(X)).

Taylor Blau (University of Washington) Verifying Strong Eventual Consistency in δ-CRDTs June, 2020 36 / 50

CRDT reductions

Reduction II: δ- to op-based

Let’s consider how φδ→op behaves on the G-Set CRDT:

φδ→op(G-Set(X)) =

S : P(X)

s0 : {}
q : λx . x ∈ s

t : λs1, s2. s2 \ s1

u : λs2. s ∪ s2

Example of reducing a δ-state CRDT to an op-based one where the type of the state and
δ-fragment are the same (ie., S = T = P(X)).

Taylor Blau (University of Washington) Verifying Strong Eventual Consistency in δ-CRDTs June, 2020 36 / 50

CRDT reductions

Reduction II: δ- to op-based

Let’s consider how φδ→op behaves on the G-Counter CRDT:

φδ→op(G-Counter) =

S : N|I|
0

s0 : [0, 0, · · · , 0j]

q : λ.
∑
i∈I

s(i)

t : min
i∈I

s1[i] 6=s2[i]

(i , s2[i])

u : λs, t. s{(fst t) 7→ (snd t)}

Example of reducing a δ-state CRDT to an op-based one where the type of the state and

δ-fragment are not same (ie., S = N|I|
0 , but T = (′id , int).

Taylor Blau (University of Washington) Verifying Strong Eventual Consistency in δ-CRDTs June, 2020 37 / 50

CRDT reductions

Reduction II: δ- to op-based

Let’s consider how φδ→op behaves on the G-Counter CRDT:

φδ→op(G-Counter) =

S : N|I|
0

s0 : [0, 0, · · · , 0j]

q : λ.
∑
i∈I

s(i)

t : min
i∈I

s1[i] 6=s2[i]

(i , s2[i])

u : λs, t. s{(fst t) 7→ (snd t)}

Example of reducing a δ-state CRDT to an op-based one where the type of the state and

δ-fragment are not same (ie., S = N|I|
0 , but T = (′id , int).

Taylor Blau (University of Washington) Verifying Strong Eventual Consistency in δ-CRDTs June, 2020 37 / 50

CRDT reductions

Reduction II: δ- to op-based

Let’s consider how φδ→op behaves on the G-Counter CRDT:

φδ→op(G-Counter) =

S : N|I|
0

s0 : [0, 0, · · · , 0j]

q : λ.
∑
i∈I

s(i)

t : min
i∈I

s1[i] 6=s2[i]

(i , s2[i])

u : λs, t. s{(fst t) 7→ (snd t)}

Example of reducing a δ-state CRDT to an op-based one where the type of the state and

δ-fragment are not same (ie., S = N|I|
0 , but T = (′id , int).

Taylor Blau (University of Washington) Verifying Strong Eventual Consistency in δ-CRDTs June, 2020 37 / 50

CRDT reductions

Reduction II: δ- to op-based

Let’s consider how φδ→op behaves on the G-Counter CRDT:

φδ→op(G-Counter) =

S : N|I|
0

s0 : [0, 0, · · · , 0j]

q : λ.
∑
i∈I

s(i)

t : min
i∈I

s1[i] 6=s2[i]

(i , s2[i])

u : λs, t. s{(fst t) 7→ (snd t)}

Example of reducing a δ-state CRDT to an op-based one where the type of the state and

δ-fragment are not same (ie., S = N|I|
0 , but T = (′id , int).

Taylor Blau (University of Washington) Verifying Strong Eventual Consistency in δ-CRDTs June, 2020 37 / 50

CRDT reductions

Reduction II: δ- to op-based

Let’s consider how φδ→op behaves on the G-Counter CRDT:

φδ→op(G-Counter) =

S : N|I|
0

s0 : [0, 0, · · · , 0j]

q : λ.
∑
i∈I

s(i)

t : min
i∈I

s1[i] 6=s2[i]

(i , s2[i])

u : λs, t. s{(fst t) 7→ (snd t)}

Example of reducing a δ-state CRDT to an op-based one where the type of the state and

δ-fragment are not same (ie., S = N|I|
0 , but T = (′id , int).

Taylor Blau (University of Washington) Verifying Strong Eventual Consistency in δ-CRDTs June, 2020 37 / 50

Mechanized CRDT proofs

Motivating network relaxations

The network model from Gomes et al. [2017] is already fairly permissive:

1 Supports delaying and dropping of messages.

2 ...which implies that we can re-order messages on the network.

But, if messages are never duplicated we can’t be sure that we’re exercising the idempotency
of t.

Taylor Blau (University of Washington) Verifying Strong Eventual Consistency in δ-CRDTs June, 2020 38 / 50

Mechanized CRDT proofs

Motivating network relaxations

The network model from Gomes et al. [2017] is already fairly permissive:

1 Supports delaying and dropping of messages.

2 ...which implies that we can re-order messages on the network.

But, if messages are never duplicated we can’t be sure that we’re exercising the idempotency
of t.

Taylor Blau (University of Washington) Verifying Strong Eventual Consistency in δ-CRDTs June, 2020 38 / 50

Mechanized CRDT proofs

Motivating network relaxations

The network model from Gomes et al. [2017] is already fairly permissive:

1 Supports delaying and dropping of messages.

2 ...which implies that we can re-order messages on the network.

But, if messages are never duplicated we can’t be sure that we’re exercising the idempotency
of t.

Taylor Blau (University of Washington) Verifying Strong Eventual Consistency in δ-CRDTs June, 2020 38 / 50

Mechanized CRDT proofs

Motivating network relaxations

The network model from Gomes et al. [2017] is already fairly permissive:

1 Supports delaying and dropping of messages.

2 ...which implies that we can re-order messages on the network.

But, if messages are never duplicated we can’t be sure that we’re exercising the idempotency
of t.

Taylor Blau (University of Washington) Verifying Strong Eventual Consistency in δ-CRDTs June, 2020 38 / 50

Mechanized CRDT proofs

Network relaxation

locale network = node-histories history
for history :: nat ⇒ ′msg event list +
fixes msg-id :: ′msg ⇒ ′msgid
assumes delivery-has-a-cause:

[[Deliver m ∈ set (history i)]] =⇒ ∃ j. Broadcast m ∈ set (history j)
and deliver-locally: [[Broadcast m ∈ set (history i)]] =⇒ Broadcast m @i Deliver m
and msg-id-unique: [[Broadcast m1 ∈ set (history i);

Broadcast m2 ∈ set (history j);
msg-id m1 = msg-id m2]] =⇒ i = j ∧ m1 = m2

Taylor Blau (University of Washington) Verifying Strong Eventual Consistency in δ-CRDTs June, 2020 39 / 50

Mechanized CRDT proofs

Network relaxation

locale network = node-histories history
for history :: nat ⇒ ′msg event list +
fixes msg-id :: ′msg ⇒ ′msgid
assumes delivery-has-a-cause:

[[Deliver m ∈ set (history i)]] =⇒ ∃ j. Broadcast m ∈ set (history j)
and deliver-locally: [[Broadcast m ∈ set (history i)]] =⇒ Broadcast m @i Deliver m
and msg-id-unique: [[Broadcast m1 ∈ set (history i);

Broadcast m2 ∈ set (history j);
msg-id m1 = msg-id m2]] =⇒ i = j ∧ m1 = m2

Taylor Blau (University of Washington) Verifying Strong Eventual Consistency in δ-CRDTs June, 2020 39 / 50

Mechanized CRDT proofs

Proof strategy

1 First, remove the assumption uniqueness assumption.
2 Identify the set of broken proofs. In each broken proof, do the following:

1 Identify the earliest broken proof step.
2 Delete it and all proof steps following it.
3 Replace the proof body with the term sorry .

3 In any order, consider a proof which ends with sorry , and repair the proof.

All broken goals were able to be solved with Isabelle’s built-in proof search (suggesting that
this assumption was not used heavily in the work of Gomes et al. [2017]).

Taylor Blau (University of Washington) Verifying Strong Eventual Consistency in δ-CRDTs June, 2020 40 / 50

Mechanized CRDT proofs

Proof strategy

1 First, remove the assumption uniqueness assumption.
2 Identify the set of broken proofs. In each broken proof, do the following:

1 Identify the earliest broken proof step.
2 Delete it and all proof steps following it.
3 Replace the proof body with the term sorry .

3 In any order, consider a proof which ends with sorry , and repair the proof.

All broken goals were able to be solved with Isabelle’s built-in proof search (suggesting that
this assumption was not used heavily in the work of Gomes et al. [2017]).

Taylor Blau (University of Washington) Verifying Strong Eventual Consistency in δ-CRDTs June, 2020 40 / 50

Mechanized CRDT proofs

Proof strategy

1 First, remove the assumption uniqueness assumption.
2 Identify the set of broken proofs. In each broken proof, do the following:

1 Identify the earliest broken proof step.
2 Delete it and all proof steps following it.
3 Replace the proof body with the term sorry .

3 In any order, consider a proof which ends with sorry , and repair the proof.

All broken goals were able to be solved with Isabelle’s built-in proof search (suggesting that
this assumption was not used heavily in the work of Gomes et al. [2017]).

Taylor Blau (University of Washington) Verifying Strong Eventual Consistency in δ-CRDTs June, 2020 40 / 50

Mechanized CRDT proofs

Proof strategy

1 First, remove the assumption uniqueness assumption.
2 Identify the set of broken proofs. In each broken proof, do the following:

1 Identify the earliest broken proof step.
2 Delete it and all proof steps following it.
3 Replace the proof body with the term sorry .

3 In any order, consider a proof which ends with sorry , and repair the proof.

All broken goals were able to be solved with Isabelle’s built-in proof search (suggesting that
this assumption was not used heavily in the work of Gomes et al. [2017]).

Taylor Blau (University of Washington) Verifying Strong Eventual Consistency in δ-CRDTs June, 2020 40 / 50

Mechanized CRDT proofs

Proof strategy

1 First, remove the assumption uniqueness assumption.
2 Identify the set of broken proofs. In each broken proof, do the following:

1 Identify the earliest broken proof step.
2 Delete it and all proof steps following it.
3 Replace the proof body with the term sorry .

3 In any order, consider a proof which ends with sorry , and repair the proof.

All broken goals were able to be solved with Isabelle’s built-in proof search (suggesting that
this assumption was not used heavily in the work of Gomes et al. [2017]).

Taylor Blau (University of Washington) Verifying Strong Eventual Consistency in δ-CRDTs June, 2020 40 / 50

Mechanized CRDT proofs

Proof strategy

1 First, remove the assumption uniqueness assumption.
2 Identify the set of broken proofs. In each broken proof, do the following:

1 Identify the earliest broken proof step.
2 Delete it and all proof steps following it.
3 Replace the proof body with the term sorry .

3 In any order, consider a proof which ends with sorry , and repair the proof.

All broken goals were able to be solved with Isabelle’s built-in proof search (suggesting that
this assumption was not used heavily in the work of Gomes et al. [2017]).

Taylor Blau (University of Washington) Verifying Strong Eventual Consistency in δ-CRDTs June, 2020 40 / 50

Mechanized CRDT proofs

Proof strategy

1 First, remove the assumption uniqueness assumption.
2 Identify the set of broken proofs. In each broken proof, do the following:

1 Identify the earliest broken proof step.
2 Delete it and all proof steps following it.
3 Replace the proof body with the term sorry .

3 In any order, consider a proof which ends with sorry , and repair the proof.

All broken goals were able to be solved with Isabelle’s built-in proof search (suggesting that
this assumption was not used heavily in the work of Gomes et al. [2017]).

Taylor Blau (University of Washington) Verifying Strong Eventual Consistency in δ-CRDTs June, 2020 40 / 50

Mechanized CRDT proofs

Proof strategy

1 First, remove the assumption uniqueness assumption.
2 Identify the set of broken proofs. In each broken proof, do the following:

1 Identify the earliest broken proof step.
2 Delete it and all proof steps following it.
3 Replace the proof body with the term sorry .

3 In any order, consider a proof which ends with sorry , and repair the proof.

All broken goals were able to be solved with Isabelle’s built-in proof search (suggesting that
this assumption was not used heavily in the work of Gomes et al. [2017]).

Taylor Blau (University of Washington) Verifying Strong Eventual Consistency in δ-CRDTs June, 2020 40 / 50

Mechanized CRDT proofs

State-based G-Counter

type-synonym (′id) state = ′id ⇒ int option
type-synonym (′id) operation = ′id state

fun option-max :: int option ⇒ int option ⇒ int option where
option-max (Some a) (Some b) = Some (max a b) |
option-max x None = x |
option-max None y = y

fun inc :: ′id ⇒ (′id state) ⇒ (′id operation) where
inc who st = (case (st who) of

None ⇒ st(who := Some 0)
| Some c ⇒ st(who := Some (c + 1)))

fun gcounter-op :: (′id operation) ⇒ (′id state) ⇀ (′id state) where
gcounter-op theirs ours = Some (λ x. option-max (theirs x) (ours x))

Taylor Blau (University of Washington) Verifying Strong Eventual Consistency in δ-CRDTs June, 2020 41 / 50

Mechanized CRDT proofs

State-based G-Counter

type-synonym (′id) state = ′id ⇒ int option
type-synonym (′id) operation = ′id state

fun option-max :: int option ⇒ int option ⇒ int option where
option-max (Some a) (Some b) = Some (max a b) |
option-max x None = x |
option-max None y = y

fun inc :: ′id ⇒ (′id state) ⇒ (′id operation) where
inc who st = (case (st who) of

None ⇒ st(who := Some 0)
| Some c ⇒ st(who := Some (c + 1)))

fun gcounter-op :: (′id operation) ⇒ (′id state) ⇀ (′id state) where
gcounter-op theirs ours = Some (λ x. option-max (theirs x) (ours x))

Taylor Blau (University of Washington) Verifying Strong Eventual Consistency in δ-CRDTs June, 2020 41 / 50

Mechanized CRDT proofs

State-based G-Counter

type-synonym (′id) state = ′id ⇒ int option
type-synonym (′id) operation = ′id state

fun option-max :: int option ⇒ int option ⇒ int option where
option-max (Some a) (Some b) = Some (max a b) |
option-max x None = x |
option-max None y = y

fun inc :: ′id ⇒ (′id state) ⇒ (′id operation) where
inc who st = (case (st who) of

None ⇒ st(who := Some 0)
| Some c ⇒ st(who := Some (c + 1)))

fun gcounter-op :: (′id operation) ⇒ (′id state) ⇀ (′id state) where
gcounter-op theirs ours = Some (λ x. option-max (theirs x) (ours x))

Taylor Blau (University of Washington) Verifying Strong Eventual Consistency in δ-CRDTs June, 2020 41 / 50

Mechanized CRDT proofs

State-based G-Counter

type-synonym (′id) state = ′id ⇒ int option
type-synonym (′id) operation = ′id state

fun option-max :: int option ⇒ int option ⇒ int option where
option-max (Some a) (Some b) = Some (max a b) |
option-max x None = x |
option-max None y = y

fun inc :: ′id ⇒ (′id state) ⇒ (′id operation) where
inc who st = (case (st who) of

None ⇒ st(who := Some 0)
| Some c ⇒ st(who := Some (c + 1)))

fun gcounter-op :: (′id operation) ⇒ (′id state) ⇀ (′id state) where
gcounter-op theirs ours = Some (λ x. option-max (theirs x) (ours x))

Taylor Blau (University of Washington) Verifying Strong Eventual Consistency in δ-CRDTs June, 2020 41 / 50

Mechanized CRDT proofs

State-based G-Counter

type-synonym (′id) state = ′id ⇒ int option
type-synonym (′id) operation = ′id state

fun option-max :: int option ⇒ int option ⇒ int option where
option-max (Some a) (Some b) = Some (max a b) |
option-max x None = x |
option-max None y = y

fun inc :: ′id ⇒ (′id state) ⇒ (′id operation) where
inc who st = (case (st who) of

None ⇒ st(who := Some 0)
| Some c ⇒ st(who := Some (c + 1)))

fun gcounter-op :: (′id operation) ⇒ (′id state) ⇀ (′id state) where
gcounter-op theirs ours = Some (λ x. option-max (theirs x) (ours x))

Taylor Blau (University of Washington) Verifying Strong Eventual Consistency in δ-CRDTs June, 2020 41 / 50

Mechanized CRDT proofs

State-based G-Counter

A few additional steps omitted here, including:

1 Proof that concurrent operations commute (ie., can be applied in arbitrary order and the
resulting state is unchanged).

2 G-Counter convergence: corollary of the above, which states that all operations can be
applied in any order.

3 Commutativity and associativity of option-max (idempotency proof is inferred
automatically).

Then:

sublocale sec: strong-eventual-consistency weak-hb hb interp-msg
λops. ∃ xs i. xs prefix of i ∧ node-deliver-messages xs = ops λ x. None

Taylor Blau (University of Washington) Verifying Strong Eventual Consistency in δ-CRDTs June, 2020 42 / 50

Mechanized CRDT proofs

State-based G-Counter

A few additional steps omitted here, including:

1 Proof that concurrent operations commute (ie., can be applied in arbitrary order and the
resulting state is unchanged).

2 G-Counter convergence: corollary of the above, which states that all operations can be
applied in any order.

3 Commutativity and associativity of option-max (idempotency proof is inferred
automatically).

Then:

sublocale sec: strong-eventual-consistency weak-hb hb interp-msg
λops. ∃ xs i. xs prefix of i ∧ node-deliver-messages xs = ops λ x. None

Taylor Blau (University of Washington) Verifying Strong Eventual Consistency in δ-CRDTs June, 2020 42 / 50

Mechanized CRDT proofs

State-based G-Counter

A few additional steps omitted here, including:

1 Proof that concurrent operations commute (ie., can be applied in arbitrary order and the
resulting state is unchanged).

2 G-Counter convergence: corollary of the above, which states that all operations can be
applied in any order.

3 Commutativity and associativity of option-max (idempotency proof is inferred
automatically).

Then:

sublocale sec: strong-eventual-consistency weak-hb hb interp-msg
λops. ∃ xs i. xs prefix of i ∧ node-deliver-messages xs = ops λ x. None

Taylor Blau (University of Washington) Verifying Strong Eventual Consistency in δ-CRDTs June, 2020 42 / 50

Mechanized CRDT proofs

State-based G-Counter

A few additional steps omitted here, including:

1 Proof that concurrent operations commute (ie., can be applied in arbitrary order and the
resulting state is unchanged).

2 G-Counter convergence: corollary of the above, which states that all operations can be
applied in any order.

3 Commutativity and associativity of option-max (idempotency proof is inferred
automatically).

Then:

sublocale sec: strong-eventual-consistency weak-hb hb interp-msg
λops. ∃ xs i. xs prefix of i ∧ node-deliver-messages xs = ops λ x. None

Taylor Blau (University of Washington) Verifying Strong Eventual Consistency in δ-CRDTs June, 2020 42 / 50

Mechanized CRDT proofs

State-based G-Counter

A few additional steps omitted here, including:

1 Proof that concurrent operations commute (ie., can be applied in arbitrary order and the
resulting state is unchanged).

2 G-Counter convergence: corollary of the above, which states that all operations can be
applied in any order.

3 Commutativity and associativity of option-max (idempotency proof is inferred
automatically).

Then:

sublocale sec: strong-eventual-consistency weak-hb hb interp-msg
λops. ∃ xs i. xs prefix of i ∧ node-deliver-messages xs = ops λ x. None

Taylor Blau (University of Washington) Verifying Strong Eventual Consistency in δ-CRDTs June, 2020 42 / 50

Mechanized CRDT proofs

State-based G-Set

type-synonym (′a) state = ′a set
type-synonym (′a) operation = ′a state

fun insert :: ′a ⇒ (′a state) ⇒ (′a operation) where
insert a as = as ∪ { a }

fun gset-op :: (′a operation) ⇒ (′a state) ⇀ (′a state) where
gset-op a as = Some (as ∪ a)

Since we’re using Isabelle’s built-in set library, no additional substantial proofs required.

sublocale sec: strong-eventual-consistency weak-hb hb interp-msg
λops. ∃ xs i. xs prefix of i ∧ node-deliver-messages xs = ops {}

Taylor Blau (University of Washington) Verifying Strong Eventual Consistency in δ-CRDTs June, 2020 43 / 50

Mechanized CRDT proofs

State-based G-Set

type-synonym (′a) state = ′a set
type-synonym (′a) operation = ′a state

fun insert :: ′a ⇒ (′a state) ⇒ (′a operation) where
insert a as = as ∪ { a }

fun gset-op :: (′a operation) ⇒ (′a state) ⇀ (′a state) where
gset-op a as = Some (as ∪ a)

Since we’re using Isabelle’s built-in set library, no additional substantial proofs required.

sublocale sec: strong-eventual-consistency weak-hb hb interp-msg
λops. ∃ xs i. xs prefix of i ∧ node-deliver-messages xs = ops {}

Taylor Blau (University of Washington) Verifying Strong Eventual Consistency in δ-CRDTs June, 2020 43 / 50

Mechanized CRDT proofs

State-based G-Set

type-synonym (′a) state = ′a set
type-synonym (′a) operation = ′a state

fun insert :: ′a ⇒ (′a state) ⇒ (′a operation) where
insert a as = as ∪ { a }

fun gset-op :: (′a operation) ⇒ (′a state) ⇀ (′a state) where
gset-op a as = Some (as ∪ a)

Since we’re using Isabelle’s built-in set library, no additional substantial proofs required.

sublocale sec: strong-eventual-consistency weak-hb hb interp-msg
λops. ∃ xs i. xs prefix of i ∧ node-deliver-messages xs = ops {}

Taylor Blau (University of Washington) Verifying Strong Eventual Consistency in δ-CRDTs June, 2020 43 / 50

Mechanized CRDT proofs

State-based G-Set

type-synonym (′a) state = ′a set
type-synonym (′a) operation = ′a state

fun insert :: ′a ⇒ (′a state) ⇒ (′a operation) where
insert a as = as ∪ { a }

fun gset-op :: (′a operation) ⇒ (′a state) ⇀ (′a state) where
gset-op a as = Some (as ∪ a)

Since we’re using Isabelle’s built-in set library, no additional substantial proofs required.

sublocale sec: strong-eventual-consistency weak-hb hb interp-msg
λops. ∃ xs i. xs prefix of i ∧ node-deliver-messages xs = ops {}

Taylor Blau (University of Washington) Verifying Strong Eventual Consistency in δ-CRDTs June, 2020 43 / 50

Mechanized CRDT proofs

State-based G-Set

type-synonym (′a) state = ′a set
type-synonym (′a) operation = ′a state

fun insert :: ′a ⇒ (′a state) ⇒ (′a operation) where
insert a as = as ∪ { a }

fun gset-op :: (′a operation) ⇒ (′a state) ⇀ (′a state) where
gset-op a as = Some (as ∪ a)

Since we’re using Isabelle’s built-in set library, no additional substantial proofs required.

sublocale sec: strong-eventual-consistency weak-hb hb interp-msg
λops. ∃ xs i. xs prefix of i ∧ node-deliver-messages xs = ops {}

Taylor Blau (University of Washington) Verifying Strong Eventual Consistency in δ-CRDTs June, 2020 43 / 50

Mechanized CRDT proofs

State-based G-Set

type-synonym (′a) state = ′a set
type-synonym (′a) operation = ′a state

fun insert :: ′a ⇒ (′a state) ⇒ (′a operation) where
insert a as = as ∪ { a }

fun gset-op :: (′a operation) ⇒ (′a state) ⇀ (′a state) where
gset-op a as = Some (as ∪ a)

Since we’re using Isabelle’s built-in set library, no additional substantial proofs required.

sublocale sec: strong-eventual-consistency weak-hb hb interp-msg
λops. ∃ xs i. xs prefix of i ∧ node-deliver-messages xs = ops {}

Taylor Blau (University of Washington) Verifying Strong Eventual Consistency in δ-CRDTs June, 2020 43 / 50

Mechanized CRDT proofs

δ-state G-Counter

type-synonym (′id) state = ′id ⇒ int option
type-synonym (′id) operation = ′id state

fun inc :: ′id ⇒ (′id state) ⇒ (′id operation) where
inc who st = (case (st who) of

None ⇒ st(who := Some 0)
| Some c ⇒ st(who := Some (c + 1)))

Taylor Blau (University of Washington) Verifying Strong Eventual Consistency in δ-CRDTs June, 2020 44 / 50

Mechanized CRDT proofs

δ-state G-Counter

type-synonym (′id) state = ′id ⇒ int option
type-synonym (′id) operation = ′id × int

fun inc :: ′id ⇒ (′id state) ⇒ (′id operation) where
inc who st = (case (st who) of

None ⇒ st(who := Some 0)
| Some c ⇒ st(who := Some (c + 1)))

Taylor Blau (University of Washington) Verifying Strong Eventual Consistency in δ-CRDTs June, 2020 44 / 50

Mechanized CRDT proofs

δ-state G-Counter

type-synonym (′id) state = ′id ⇒ int option
type-synonym (′id) operation = ′id × int

fun inc :: ′id ⇒ (′id state) ⇒ (′id operation) where
inc who st = (case (st who) of

None ⇒ st(who := Some 0)
| Some c ⇒ st(who := Some (c + 1)))

Taylor Blau (University of Washington) Verifying Strong Eventual Consistency in δ-CRDTs June, 2020 44 / 50

Mechanized CRDT proofs

δ-state G-Counter

type-synonym (′id) state = ′id ⇒ int option
type-synonym (′id) operation = ′id × int

fun inc :: ′id ⇒ (′id state) ⇒ (′id operation) where
inc who st = (who, (1 + (case (st who) of None ⇒ 0 | Some (x) ⇒ x)))

Taylor Blau (University of Washington) Verifying Strong Eventual Consistency in δ-CRDTs June, 2020 44 / 50

Mechanized CRDT proofs

δ-state G-Counter

type-synonym (′id) state = ′id ⇒ int option
type-synonym (′id) operation = ′id × int

fun inc :: ′id ⇒ (′id state) ⇒ (′id operation) where
inc who st = (who, (1 + (case (st who) of None ⇒ 0 | Some (x) ⇒ x)))

fun op-to-state :: (′id operation) ⇒ (′id state) where
op-to-state (who, count) = (λx. if x = who then Some count else None)

Taylor Blau (University of Washington) Verifying Strong Eventual Consistency in δ-CRDTs June, 2020 44 / 50

Mechanized CRDT proofs

δ-state G-Counter

type-synonym (′id) state = ′id ⇒ int option
type-synonym (′id) operation = ′id × int

fun inc :: ′id ⇒ (′id state) ⇒ (′id operation) where
inc who st = (who, (1 + (case (st who) of None ⇒ 0 | Some (x) ⇒ x)))

fun op-to-state :: (′id operation) ⇒ (′id state) where
op-to-state (who, count) = (λx. if x = who then Some count else None)

fun delta-gcounter-op :: (′id operation) ⇒ (′id state) ⇀ (′id state) where
delta-gcounter-op theirs ours = Some (λ x. option-max ((op-to-state theirs) x) (ours x))

Taylor Blau (University of Washington) Verifying Strong Eventual Consistency in δ-CRDTs June, 2020 44 / 50

Mechanized CRDT proofs

δ-state G-Counter

type-synonym (′id) state = ′id ⇒ int option
type-synonym (′id) operation = ′id × int

fun inc :: ′id ⇒ (′id state) ⇒ (′id operation) where
inc who st = (who, (1 + (case (st who) of None ⇒ 0 | Some (x) ⇒ x)))

fun op-to-state :: (′id operation) ⇒ (′id state) where
op-to-state (who, count) = (λx. if x = who then Some count else None)

fun delta-gcounter-op :: (′id operation) ⇒ (′id state) ⇀ (′id state) where
delta-gcounter-op theirs ours = Some (λ x. option-max ((op-to-state theirs) x) (ours x))

Taylor Blau (University of Washington) Verifying Strong Eventual Consistency in δ-CRDTs June, 2020 44 / 50

Mechanized CRDT proofs

δ-state G-Set

type-synonym (′a) state = ′a set
type-synonym (′a) operation = ′a state

fun insert :: ′a ⇒ (′a state) ⇒ (′a operation) where
insert a as = as ∪ { a }

fun gset-op :: (′a operation) ⇒ (′a state) ⇀ (′a state) where
gset-op a as = Some (as ∪ a)

Taylor Blau (University of Washington) Verifying Strong Eventual Consistency in δ-CRDTs June, 2020 45 / 50

Mechanized CRDT proofs

δ-state G-Set

type-synonym (′a) state = ′a set
type-synonym (′a) operation = ′a

fun insert :: ′a ⇒ (′a state) ⇒ (′a operation) where
insert a as = as ∪ { a }

fun gset-op :: (′a operation) ⇒ (′a state) ⇀ (′a state) where
gset-op a as = Some (as ∪ a)

Taylor Blau (University of Washington) Verifying Strong Eventual Consistency in δ-CRDTs June, 2020 45 / 50

Mechanized CRDT proofs

δ-state G-Set

type-synonym (′a) state = ′a set
type-synonym (′a) operation = ′a

fun insert :: ′a ⇒ (′a state) ⇒ (′a operation) where
insert a as = as ∪ { a }

fun gset-op :: (′a operation) ⇒ (′a state) ⇀ (′a state) where
gset-op a as = Some (as ∪ a)

Taylor Blau (University of Washington) Verifying Strong Eventual Consistency in δ-CRDTs June, 2020 45 / 50

Mechanized CRDT proofs

δ-state G-Set

type-synonym (′a) state = ′a set
type-synonym (′a) operation = ′a

fun insert :: ′a ⇒ (′a state) ⇒ (′a operation) where
insert a - = a

fun gset-op :: (′a operation) ⇒ (′a state) ⇀ (′a state) where
gset-op a as = Some (as ∪ a)

Taylor Blau (University of Washington) Verifying Strong Eventual Consistency in δ-CRDTs June, 2020 45 / 50

Mechanized CRDT proofs

δ-state G-Set

type-synonym (′a) state = ′a set
type-synonym (′a) operation = ′a

fun insert :: ′a ⇒ (′a state) ⇒ (′a operation) where
insert a - = a

fun gset-op :: (′a operation) ⇒ (′a state) ⇀ (′a state) where
gset-op a as = Some (as ∪ a)

Taylor Blau (University of Washington) Verifying Strong Eventual Consistency in δ-CRDTs June, 2020 45 / 50

Mechanized CRDT proofs

δ-state G-Set

type-synonym (′a) state = ′a set
type-synonym (′a) operation = ′a

fun insert :: ′a ⇒ (′a state) ⇒ (′a operation) where
insert a - = a

fun delta-gset-op :: (′a operation) ⇒ (′a state) ⇀ (′a state) where
delta-gset-op a as = Some (as ∪ { a })

Taylor Blau (University of Washington) Verifying Strong Eventual Consistency in δ-CRDTs June, 2020 45 / 50

Mechanized CRDT proofs

δ-state G-Set

type-synonym (′a) state = ′a set
type-synonym (′a) operation = ′a

fun insert :: ′a ⇒ (′a state) ⇒ (′a operation) where
insert a - = a

fun delta-gset-op :: (′a operation) ⇒ (′a state) ⇀ (′a state) where
delta-gset-op a as = Some (as ∪ { a })

Taylor Blau (University of Washington) Verifying Strong Eventual Consistency in δ-CRDTs June, 2020 45 / 50

Conclusion

Future work

1 Pair type locales; parameterize a proof that combinations of CRDTs are SEC.
1 Immediately: PN-Counter.
2 Immediately: 2P-Set.

2 Pure δ-state encodings.
1 Anti-entropy algorithms [Almeida et al., 2018].
2 No delivery precondition.

3 Proofs of causally consistent δ-state CRDTs [Almeida et al., 2018]:
1 δ-interval:

∆a,b
i =

⊔{
dk
i : k ∈ [a, b)

}
2 Causal merging condition: Replica i only joins a δ-interval ∆a,b

j into its own state Xi if:
Xi w X a

j

Taylor Blau (University of Washington) Verifying Strong Eventual Consistency in δ-CRDTs June, 2020 46 / 50

Conclusion

Future work

1 Pair type locales; parameterize a proof that combinations of CRDTs are SEC.
1 Immediately: PN-Counter.
2 Immediately: 2P-Set.

2 Pure δ-state encodings.
1 Anti-entropy algorithms [Almeida et al., 2018].
2 No delivery precondition.

3 Proofs of causally consistent δ-state CRDTs [Almeida et al., 2018]:
1 δ-interval:

∆a,b
i =

⊔{
dk
i : k ∈ [a, b)

}
2 Causal merging condition: Replica i only joins a δ-interval ∆a,b

j into its own state Xi if:
Xi w X a

j

Taylor Blau (University of Washington) Verifying Strong Eventual Consistency in δ-CRDTs June, 2020 46 / 50

Conclusion

Future work

1 Pair type locales; parameterize a proof that combinations of CRDTs are SEC.
1 Immediately: PN-Counter.
2 Immediately: 2P-Set.

2 Pure δ-state encodings.
1 Anti-entropy algorithms [Almeida et al., 2018].
2 No delivery precondition.

3 Proofs of causally consistent δ-state CRDTs [Almeida et al., 2018]:
1 δ-interval:

∆a,b
i =

⊔{
dk
i : k ∈ [a, b)

}
2 Causal merging condition: Replica i only joins a δ-interval ∆a,b

j into its own state Xi if:
Xi w X a

j

Taylor Blau (University of Washington) Verifying Strong Eventual Consistency in δ-CRDTs June, 2020 46 / 50

Conclusion

Future work

1 Pair type locales; parameterize a proof that combinations of CRDTs are SEC.
1 Immediately: PN-Counter.
2 Immediately: 2P-Set.

2 Pure δ-state encodings.
1 Anti-entropy algorithms [Almeida et al., 2018].
2 No delivery precondition.

3 Proofs of causally consistent δ-state CRDTs [Almeida et al., 2018]:
1 δ-interval:

∆a,b
i =

⊔{
dk
i : k ∈ [a, b)

}
2 Causal merging condition: Replica i only joins a δ-interval ∆a,b

j into its own state Xi if:
Xi w X a

j

Taylor Blau (University of Washington) Verifying Strong Eventual Consistency in δ-CRDTs June, 2020 46 / 50

Conclusion

Future work

1 Pair type locales; parameterize a proof that combinations of CRDTs are SEC.
1 Immediately: PN-Counter.
2 Immediately: 2P-Set.

2 Pure δ-state encodings.
1 Anti-entropy algorithms [Almeida et al., 2018].
2 No delivery precondition.

3 Proofs of causally consistent δ-state CRDTs [Almeida et al., 2018]:
1 δ-interval:

∆a,b
i =

⊔{
dk
i : k ∈ [a, b)

}
2 Causal merging condition: Replica i only joins a δ-interval ∆a,b

j into its own state Xi if:
Xi w X a

j

Taylor Blau (University of Washington) Verifying Strong Eventual Consistency in δ-CRDTs June, 2020 46 / 50

Conclusion

Future work

1 Pair type locales; parameterize a proof that combinations of CRDTs are SEC.
1 Immediately: PN-Counter.
2 Immediately: 2P-Set.

2 Pure δ-state encodings.
1 Anti-entropy algorithms [Almeida et al., 2018].
2 No delivery precondition.

3 Proofs of causally consistent δ-state CRDTs [Almeida et al., 2018]:
1 δ-interval:

∆a,b
i =

⊔{
dk
i : k ∈ [a, b)

}
2 Causal merging condition: Replica i only joins a δ-interval ∆a,b

j into its own state Xi if:
Xi w X a

j

Taylor Blau (University of Washington) Verifying Strong Eventual Consistency in δ-CRDTs June, 2020 46 / 50

Conclusion

Future work

1 Pair type locales; parameterize a proof that combinations of CRDTs are SEC.
1 Immediately: PN-Counter.
2 Immediately: 2P-Set.

2 Pure δ-state encodings.
1 Anti-entropy algorithms [Almeida et al., 2018].
2 No delivery precondition.

3 Proofs of causally consistent δ-state CRDTs [Almeida et al., 2018]:
1 δ-interval:

∆a,b
i =

⊔{
dk
i : k ∈ [a, b)

}
2 Causal merging condition: Replica i only joins a δ-interval ∆a,b

j into its own state Xi if:
Xi w X a

j

Taylor Blau (University of Washington) Verifying Strong Eventual Consistency in δ-CRDTs June, 2020 46 / 50

Conclusion

Future work

1 Pair type locales; parameterize a proof that combinations of CRDTs are SEC.
1 Immediately: PN-Counter.
2 Immediately: 2P-Set.

2 Pure δ-state encodings.
1 Anti-entropy algorithms [Almeida et al., 2018].
2 No delivery precondition.

3 Proofs of causally consistent δ-state CRDTs [Almeida et al., 2018]:
1 δ-interval:

∆a,b
i =

⊔{
dk
i : k ∈ [a, b)

}
2 Causal merging condition: Replica i only joins a δ-interval ∆a,b

j into its own state Xi if:
Xi w X a

j

Taylor Blau (University of Washington) Verifying Strong Eventual Consistency in δ-CRDTs June, 2020 46 / 50

Conclusion

Future work

1 Pair type locales; parameterize a proof that combinations of CRDTs are SEC.
1 Immediately: PN-Counter.
2 Immediately: 2P-Set.

2 Pure δ-state encodings.
1 Anti-entropy algorithms [Almeida et al., 2018].
2 No delivery precondition.

3 Proofs of causally consistent δ-state CRDTs [Almeida et al., 2018]:
1 δ-interval:

∆a,b
i =

⊔{
dk
i : k ∈ [a, b)

}
2 Causal merging condition: Replica i only joins a δ-interval ∆a,b

j into its own state Xi if:
Xi w X a

j

Taylor Blau (University of Washington) Verifying Strong Eventual Consistency in δ-CRDTs June, 2020 46 / 50

Conclusion

Conclusion

1 Extended the work of Gomes et al. [2017] to mechanize that δ-state CRDTs [Almeida
et al., 2018] are SEC.

2 Two reductions: φstate→op and φδ→op.

3 Network relaxations to allow duplication of messages.

4 Mechanized proof that two δ-state CRDTs (G-Counter, G-Set) are SEC.

Taylor Blau (University of Washington) Verifying Strong Eventual Consistency in δ-CRDTs June, 2020 47 / 50

Conclusion

Conclusion

1 Extended the work of Gomes et al. [2017] to mechanize that δ-state CRDTs [Almeida
et al., 2018] are SEC.

2 Two reductions: φstate→op and φδ→op.

3 Network relaxations to allow duplication of messages.

4 Mechanized proof that two δ-state CRDTs (G-Counter, G-Set) are SEC.

Taylor Blau (University of Washington) Verifying Strong Eventual Consistency in δ-CRDTs June, 2020 47 / 50

Conclusion

Conclusion

1 Extended the work of Gomes et al. [2017] to mechanize that δ-state CRDTs [Almeida
et al., 2018] are SEC.

2 Two reductions: φstate→op and φδ→op.

3 Network relaxations to allow duplication of messages.

4 Mechanized proof that two δ-state CRDTs (G-Counter, G-Set) are SEC.

Taylor Blau (University of Washington) Verifying Strong Eventual Consistency in δ-CRDTs June, 2020 47 / 50

Conclusion

Conclusion

1 Extended the work of Gomes et al. [2017] to mechanize that δ-state CRDTs [Almeida
et al., 2018] are SEC.

2 Two reductions: φstate→op and φδ→op.

3 Network relaxations to allow duplication of messages.

4 Mechanized proof that two δ-state CRDTs (G-Counter, G-Set) are SEC.

Taylor Blau (University of Washington) Verifying Strong Eventual Consistency in δ-CRDTs June, 2020 47 / 50

Conclusion

Thank you!
Questions?

Taylor Blau (University of Washington) Verifying Strong Eventual Consistency in δ-CRDTs June, 2020 48 / 50

Conclusion

Thank you!
Questions?

Taylor Blau (University of Washington) Verifying Strong Eventual Consistency in δ-CRDTs June, 2020 48 / 50

Conclusion

P. S. Almeida, A. Shoker, and C. Baquero. Delta state replicated data types. Journal of
Parallel and Distributed Computing, 111:162–173, Jan 2018. ISSN 0743-7315. doi:
10.1016/j.jpdc.2017.08.003. URL http://dx.doi.org/10.1016/j.jpdc.2017.08.003.

V. B. F. Gomes, M. Kleppmann, D. P. Mulligan, and A. R. Beresford. Verifying strong
eventual consistency in distributed systems. CoRR, abs/1707.01747, 2017. URL
http://arxiv.org/abs/1707.01747.

H. Howard and R. Mortier. Paxos vs raft. Proceedings of the 7thWorkshop on Principles and
Practice of Consistency for Distributed Data, Apr 2020. doi: 10.1145/3380787.3393681.
URL http://dx.doi.org/10.1145/3380787.3393681.

L. Lamport. The part-time parliament. ACM Trans. Comput. Syst., 16(2):133–169, May 1998.
ISSN 0734-2071. doi: 10.1145/279227.279229. URL
https://doi.org/10.1145/279227.279229.

Taylor Blau (University of Washington) Verifying Strong Eventual Consistency in δ-CRDTs June, 2020 49 / 50

http://dx.doi.org/10.1016/j.jpdc.2017.08.003
http://arxiv.org/abs/1707.01747
http://dx.doi.org/10.1145/3380787.3393681
https://doi.org/10.1145/279227.279229

Conclusion

D. Ongaro and J. Ousterhout. In search of an understandable consensus algorithm. In 2014
USENIX Annual Technical Conference (USENIX ATC 14), pages 305–319, Philadelphia, PA,
June 2014. USENIX Association. ISBN 978-1-931971-10-2. URL https:

//www.usenix.org/conference/atc14/technical-sessions/presentation/ongaro.

M. Shapiro, N. Preguiça, C. Baquero, and M. Zawirski. Conflict-free Replicated Data Types.
Research Report RR-7687, July 2011. URL https://hal.inria.fr/inria-00609399.

J. R. Wilcox, D. Woos, P. Panchekha, Z. Tatlock, X. Wang, M. D. Ernst, and T. Anderson.
Verdi: A framework for implementing and formally verifying distributed systems. In PLDI
2015: Proceedings of the ACM SIGPLAN 2015 Conference on Programming Language
Design and Implementation, pages 357–368, Portland, OR, USA, June 2015.

D. Woos, J. R. Wilcox, S. Anton, Z. Tatlock, M. D. Ernst, and T. Anderson. Planning for
change in a formal verification of the raft consensus protocol. In Proceedings of the 5th
ACM SIGPLAN Conference on Certified Programs and Proofs, CPP 2016, page 154–165,
New York, NY, USA, 2016. Association for Computing Machinery. ISBN 9781450341271.
doi: 10.1145/2854065.2854081. URL https://doi.org/10.1145/2854065.2854081.

Taylor Blau (University of Washington) Verifying Strong Eventual Consistency in δ-CRDTs June, 2020 50 / 50

https://www.usenix.org/conference/atc14/technical-sessions/presentation/ongaro
https://www.usenix.org/conference/atc14/technical-sessions/presentation/ongaro
https://hal.inria.fr/inria-00609399
https://doi.org/10.1145/2854065.2854081

	Introduction
	Motivation
	Background
	Consistency Classes
	Conflict-free Replicated Datatypes
	state-based CRDTs
	op-based CRDTs

	-state CRDTs
	CRDT reductions
	Mechanized CRDT proofs
	Conclusion
	References

