
Verifying Strong Eventual Consistency
in δ-CRDTs

by

Taylor Blau

Supervised by Dan Grossman

A senior thesis submitted in partial fulfillment of

the requirements for the degree of

Bachelor of Science
With Departmental Honors

Computer Science & Engineering

University of Washington

June 2020

Presentation of work given on

Thesis and presentation approved by

Date

A B S T R A C T

Conflict-free replicated data types (CRDTs) are a natural structure with which to
communicate information about a shared computation in a distributed setting
where coordination overhead may not be tolerated, and individual participants
are allowed to temporarily diverge from the overall computation. Within this
setting, there are two classical approaches: state- and operation-based CRDTs.
The former define a commutative, associative, and idempotent join operation,
and their states a monotone join semi-lattice. State-based CRDTs may be further
distinguished into classical- and δ-state CRDTs. The former communicate their
full state after each update, whereas the latter communicate only the changed
state. Op-based CRDTs communicate operations (not state), thus making their
updates non-idempotent. Whereas op-based CRDTs require little information to
be exchanged, they demand relatively strong network guarantees (exactly-once
message delivery), and state-based CRDTs suffer the opposite problem. Both
satisfy strong eventual consistency (SEC).

We posit that δ-state CRDTs both (1) require less communication overhead
from payload size, and (2) tolerate relatively weak network environments,
making them an ideal candidate for real-world use of CRDTs. Our central
intuition is a pair of reductions between state-, δ-state, and op-based CRDTs.
We formalize this intuition in the Isabelle interactive theorem prover and show
that state-based CRDTs achieve SEC. We present a relaxed network model in
Isabelle and show that state-based CRDTs still maintain SEC. Finally, we extend
our work to show that δ-state CRDTs maintain SEC when only communicating
δ-state fragments, even under relatively weak network conditions.

i

A C K N O W L E D G E M E N T S

This thesis is the product of many ideas grown out of collaboration and discus-
sion with my advisory committee, as well as other researchers in this area.

First, Talia Ringer, my senior thesis mentor. Talia’s thoughtfulness and
willingness to absorb a new research area was inspiring and fostered me to look
at this area from a new angle. Her patience in acquainting me with interactive
theorem provers was key in making this thesis possible. Though always a source
of good ideas, this thesis would not exist without Talia’s unwavering support. I
would be remiss if I did not mention Talia’s encouragement throughout, even
when the process was overwhelming.

Second, Dan Grossman, my faculty advisor. Dan has made my undergrad-
uate experience meaningful in ways that I am not sure many others are as
fortunate as I to have experienced. Dan took a skeptical pre-freshman, encour-
aged him to take CSE 341, and indulged him in many walks back to the Paul G.
Allen building after class. Dan allowed me to T.A. for him, and was unflapped
when I informed him that I had volunteered him to be my faculty advisor.1 Of
course, Dan is also a font of insight, offering new ideas and perspectives when
they were needed, and always giving me something to think about after our
meetings.

I would also like to thank Martin Kleppman, as well as his co-authors, for
his constant correspondence throughout this work. Their work is foundational
to our approach, and is the basis on which many of our ideas (and proofs) are
built. Martin was always willing to discuss the state of our work, and to offer
his guidance about interesting directions to pursue.

Finally, I wish to thank my family. My Mom and Dad, for their love,
for always encouraging me, and for giving me the freedom to explore areas
that interested me. Tracy and Richard Lippard, for their encouragement and
hospitality during which significant portions of this thesis were written. Lastly,
I wish to thank Maya Lippard, my partner, constant source of inspiration, and
without whom this thesis would not exist.

1 It could be said he was voluntold.

ii

D E D I C AT I O N

To Maya, forever and ever.

iii

C O N T E N T S

1 introduction 1

1.1 Preliminaries . 2

1.2 op- and state-based trade-offs . 3

1.3 Contributions . 4

2 background 6

2.1 Motivation . 6

2.2 Coordinated Replication . 6

2.3 Distributed Consensus Algorithms 7

2.4 Consistency Guarantees . 8

2.4.1 Eventual Consistency . 9

2.4.2 Strong Eventual Consistency 10

2.5 state-based CRDTs . 11

2.5.1 Merging states . 11

2.6 op-based CRDTs . 13

2.7 δ-state CRDTs . 14

3 elementary crdt instantiations 16

3.1 Example: Grow-Only Counter . 16

3.1.1 State-based G-Counter . 16

3.1.2 op-based G-Counter . 17

3.1.3 δ-state based G-Counter . 19

3.2 Example: G-Set . 20

3.2.1 State-based G-Set . 20

3.2.2 op-based G-Set . 21

3.2.3 δ-state based G-Set . 21

4 crdt reductions 23

4.1 state-based CRDTs as op-based . 23

4.1.1 Mapping states under φ . 24

4.1.2 Mapping updates under φ 24

4.2 δ-state based CRDTs as op-based 25

5 example crdts under relaxed network model 28

5.1 Network Relaxations . 28

5.1.1 Delivery Semantics . 30

5.2 State-based CRDTs . 32

5.2.1 State-based G-Counter . 32

5.2.2 State-based G-Set . 35

5.3 δ-state based CRDTs . 37

5.3.1 δ-state based G-Counter . 37

5.3.2 δ-state based G-Set . 38

5.4 Alternative encoding of the δ-state reduction 39

iv

CONTENTS v

5.4.1 Refined δ-state based G-Counter 40

5.4.2 Refined δ-state based G-Set 41

5.5 Conclusion . 42

6 future work 44

6.1 Verifying additional δ-state CRDTs 44

6.2 Direct δ-state CRDT proofs . 45

6.3 Causally Consistent δ-CRDTs . 47

7 conclusion 49

a additional proofs 50

a.1 state-based G-Counter CRDT . 50

a.2 state-based G-Set CRDT . 51

a.3 δ-state G-Counter CRDT . 52

a.4 δ-state G-Set CRDT . 53

a.5 Restricted δ-state G-Counter CRDT 54

a.6 Restricted δ-state G-Set CRDT . 55

Bibliography 57

L I S T O F F I G U R E S

Figure 1 Specification of a state-based G-Counter CRDT. 17

Figure 2 A correct execution of vector-based state G-Counters
exchanging updates. 17

Figure 3 Specification of an op-based G-Counter CRDT. 18

Figure 4 Alternative specification of an op-based G-Counter CRDT. 18

Figure 5 Specification of a δ-state based G-Counter CRDT. 19

Figure 6 A pair of vector-based δ-state G-Counters replicas ex-
changing updates with each other. 19

Figure 7 state-based G-Set CRDT 20

Figure 8 op-based G-Set CRDT . 21

Figure 9 δ-state based G-Set CRDT 22

Figure 10 Isabelle specification of the Network locale as given
in Gomes et al. [2017]. 30

Figure 11 Isabelle definitions for state and operation for a state-
based G-Counter CRDT. 32

Figure 12 Isabelle definitions for state-based G-Counter-related
functions. 33

Figure 13 Isabelle definition for the “operation” of a state-based
G-Counter CRDT. 33

Figure 14 Isabelle proofs that concurrent operations commute in
the state-based G-Counter. 34

Figure 15 Isabelle proofs that the state-based G-Counter is convergent. 35

Figure 16 Isabelle proof that the state-based G-Counter CRDT is SEC. 35

Figure 17 Isabelle types for the state and operations of a state-based
G-Set. 36

Figure 18 Isabelle definition of the insertion operation for a state-
based G-Set. 36

Figure 19 Isabelle instantiation of the strong-eventual-consistency lo-
cale for the state-based G-Set. 37

Figure 20 Isabelle definition of the δ-state G-Counter CRDT. 38

Figure 21 Isabelle definition of the δ-state G-Set CRDT. 39

Figure 22 Isabelle definitions for the state and operation types for
the restricted δ-based G-Counter. 40

Figure 23 Isabelle definitions of the remainder of functions for the
restricted δ-state G-Counter. 41

Figure 24 Isabelle definitions for the state and operation types for
the restricted δ-based G-Set. 41

vi

LIST OF FIGURES vii

Figure 25 Isabelle definitions of the remainder of functions for the
restricted δ-state G-Set. 42

Figure 26 δ-state based PN-Counter CRDT 45

Figure 27 δ-state CRDTs violating SEC without the causal merging
condition. 46

1
I N T R O D U C T I O N

Computational systems today are larger than ever. Whereas previously one
would architect their programs to run on a single system, it is now commonplace
to design programs that share computation across multiple machines which
communicate with each other in a coordinated fashion. Therefore, it is natural
to ask why one might design from the latter perspective rather than the former.
The answer is threefold:

1. Resiliency. Designing a computational workload to be distributed among
participants tolerates the failure of any one (or more) of those participants.

2. Scalability. When designed from a distributed standpoint, “scaling” your
workload to meet a higher demand is reduced to adding additional
hardware, not designing more efficient ways to do the computation.

3. Locality. When a system is accessed from a broad set of geographic
locations, strategic placement of hardware in locations near request-origin
sites can lower latency for users.

So, it is clear that as our demand on such computations grow, that so too
must our need to design these systems in a way that first considers the concerns
of resiliency, scalability, and locality.

In order to design systems in this way, however, one must consider addi-
tionally the challenges imposed by not having access to shared memory among
participants in the computation. If a program runs in a single-threaded fashion
on a single computer, there is no need to coordinate memory accesses, since
only one part of the program may read or write memory at a given time. If
the program is written to be multithreaded, then the threads must coordinate
among themselves by using mutexes or communication channels to avoid race
conditions and other concurrency errors.

The same challenge exists when a system is distributed at the hardware and
machine level, rather than among multiple threads running on a single piece
of hardware. The challenge, however, is made more difficult by the fact that
the communication overhead is far higher between separate pieces of hardware
than between two threads.

This thesis focuses on datatypes by which computation can be coordinated
across multiple machines. In particular, we formalize a set of consistency
guarantees (namely, Strong Eventual Consistency, hereafter SEC) over a class of
replicated datatypes, δ-state Conflict-Free Replicated Datatypes (CRDTs). We
describe the preliminaries necessary to contextualize the body of this work in
the following section.

1

1.1 preliminaries 2

1.1 preliminaries

Our discussion here focuses on CRDTs, which are designed to be both eas-
ily distributed and require relatively low coordination overhead by allowing
individual participants to diverge temporarily from the state of the overall
computation. That is, the computation reflects a different value depending on
which participant in the computation responds to the request.

These datatypes operate in such a way so as to both avoid conflict between
concurrent updates, and to avoid locking and coordination overhead [Shapiro
et al., 2011]. CRDTs have seen moderate use in industry. Based on introspection
of the runtime headers in iOS, Apple is believed to use CRDTs for offline
synchronization of content in their note-taking app, Notes [Apple, Inc., 2018].
Redis, a popular open-source distributed cache uses CRDTs in their Enterprise
offering to perform certain kinds of replication and conflict-resolution [Redis,
Inc., 2020].

CRDTs are said to achieve SEC which is to say that they achieve a stronger
form of eventual consistency (EC). We summarize the definitions of eventual- and
strong eventual consistency from Shapiro et al. [2011].

Definition 1.1 (Eventual Consistency). A replicated datatype is eventually consis-
tent if:

• Updates delivered to it are eventually delivered to all other replicas in the system.

• All well-behaved replicas that have received the same set of updates eventually
reflect the same state.

• All executions on this datatype are terminating.

Definition 1.2 (Strong Eventual Consistency). A replicated datatype is strong
eventually consistent if:

• It is eventually consistent, as above.

• Convergence occurs immediately, that is, any two replicas that have received the
same set of updates always reflect the same state.

Broadly speaking, there are two classes of CRDTs, which we refer to as
the op- and state-based variants. We will provide formal definitions for each
of the two classes in Chapter 2. We now present brief definitions of op- and
state-based CRDTs based on Baquero et al. [2014] and Shapiro et al. [2011]:

Definition 1.3 (Operation-based Conflict-Free Replicated Datatype (op-based
CRDT)). op-based CRDTs apply updates in two phases:

1. First, an operation is prepared locally. At this phase, the op-based CRDT

combines the operation with the current state to send a representation of the
update to other replicas.

1.2 op- and state-based trade-offs 3

2. Then, the represented operation is applied to other replicas using effect, where
effect is commutative for concurrent operations.

Definition 1.4 (State-based Conflict-Free Replicated Datatype (state-based CRDT)).
state-based CRDTs only apply updates to their local state, and periodically send serial-
ized representations of the contents of their state to other replicas.

Crucially, these states form a monotone join semi-lattice (i.e,. a lattice 〈S,t〉
where for any s1, s2 ∈ S at both s1 v s1 t s2 and s2 v s1 t s2 hold for commutative,
associative, and idempotent t).

To achieve convergence, state-based CRDTs periodically send their state to other
replicas, which then replace their own state by joining the received state into their own.

1.2 op- and state-based trade-offs

These two classes are distinguished from one another based on their strengths
and weaknesses. In one sense, op- and state-based CRDTs form a kind of a
dual, where they trade off strong network guarantees for message payload
size [Baquero et al., 2014].

Because the state-based CRDT needs to send a representation of its entire
state, it often requires a significant amount of network bandwidth to propagate
large messages [Almeida et al., 2018]. In Section 3.1 we will present an example
where the payload size grows as a linear function of the number of replicas. In
return for this large payload size, state-based CRDTs are able to achieve SEC

even in networks that are allowed to drop, reorder, and duplicate messages.
On the other hand, op-based CRDTs require relatively little network band-

width to send a notification of a single update (typically the representation gen-
erated in the prepare stage is dwarfed by the typical payload size of a state-based
CRDT), but in exchange demand that the network deliver messages in-order
for sequential (comparable) updates and at-most-once delivery [Shapiro et al.,
2011].

Significant work in this area (Almeida et al. [2018], Cabrita and Preguiça
[2017], Enes et al. [2018], van der Linde et al. [2016]) has focused on mediating
these two extremes. This line of research (particularly in Almeida et al. [2018])
has identified δ-state CRDTs—a variant of the state-based CRDT which we
discuss in Section 2.5—as an alternative which occupies a satisfying position
between the two extremes. δ-state CRDTs behave as traditional state-based
CRDTs, with the exception that their updates consist of state fragments instead
of their entire state. These fragments (generated by δ-mutators and called δ-
updates) are then applied locally at all other replicas to reassemble the full state.
Because these fragments often do not need to comprise the full state, δ-state
CRDTs in general have small payload size (thus requiring a similar amount
of bandwidth as messages sent and received from op-based CRDTs), while
still tolerating the same set of network deficiencies as state-based CRDTs. This
combination of properties makes them an appealing alternative to traditional

1.3 contributions 4

state- and op-based CRDTs, and places interest in studying their convergence
properties.

1.3 contributions

Our main contribution builds on the work in Gomes et al. [2017] and introduces
a set of formally verified, machine-checked proofs in Isabelle [Nipkow et al.,
2002] of the main result in Almeida et al. [2018], which we re-state below:1

Theorem 1.1 (Almedia, Shoker, Baquero, ’18). Consider a set of replicas of a δ-
CRDT object, replica i evolving along a sequence of states X0

i = ⊥, X1
i = . . ., , each

replica performing delta-mutations of the form mδ
i,k(Xk

i) at some subset of its sequence
of states, and evolving by joining the current state either with self-generated deltas or
with delta-groups received from others. If each delta-mutation mδ

i,k(Xk
i) produced at

each replica is joined (directly or as part of a delta-group) at least once with every other
replica, all replica states become equal.

Here, Xt
i refers to the state of the ith replica at time t, and mδ

i,k(Xk
i) refers to

the δ-mutation applied at the ith replica at time k.
We rely on the work of Gomes et al. [2017] in order to build a handful of

state- and δ-state CRDTs as in Almeida et al. [2018] to show that even under
weak network guarantees2 these δ-state CRDTs still achieve SEC.

Our verification efforts yielded a pair of CRDTs—the grow-only counter (G-
Counter) and set (G-Set)—in three encodings: one state-based, and two δ-state
encodings. Our key idea guiding these verification efforts is to treat op- and
state-based CRDTs similarly by modeling state-based CRDTs as op-based where
the operation is the join provided by the semi-lattice.3 We show that SEC is
preserved in these CRDTs, even when the underlying network interface has been
weakened substantially from when it was introduced in the aforementioned
work.

The remainder of this thesis is ordered as follows:

• In Chapter 2, we summarize existing research in the broader realm of
CRDTs. We present formal definitions of op- and state-based CRDTs, and
conduct a thorough discussion of their relative strengths and weaknesses.
Likewise, we present a summary of some work in the area of δ-state
CRDTs, and present its strengths.

• In Chapter 3, we discuss examples of two CRDTs in an op-, state-, and
δ-state style. These objects will be the subject of our verification efforts in
Chapter 5.

1 The source of our proofs is available for free at: https://github.com/ttaylorr/thesis.
2 We inherit dropping and reordering of messages from the original work of Gomes et al. [2017],

but further relax the network model by also allowing messages to be duplicated.
3 This approach is described in detail in Section 4.1.

https://github.com/ttaylorr/thesis

1.3 contributions 5

• In Chapter 4, we outline a pair of reductions between state-, op-, and
δ-state based CRDTs which guides the majority of our proof strategy.

• In Chapter 5, we discuss the outcome of our approach by presenting a
pair of successfully-verified δ-state CRDTs, as well as describe our efforts
in relaxing the network model in order to verify these objects over a
non-trivial set of network behaviors.

• In Chapter 6, we suggest future research directions. We consider a handful
of areas in which formalizing existing results may be fruitful, as well as a
handful of additional approaches to the proofs we presented here.

• In Chapter 7, we conclude.

2
B A C K G R O U N D

This chapter outlines the preliminary information necessary to contextualize
the remainder of this thesis for readers unfamiliar with existing CRDT research.
Here we motivate CRDTs, formalize their state- and op-based variants, and
present examples of common instantiations. Finally, we conclude with a discus-
sion of the different levels of consistency guarantees that each CRDT variant
offers, and rationalize which levels of consistency are appealing in certain
situations.

2.1 motivation

CRDTs are a way to store several copies of a data-structure on multiple comput-
ers which form a distributed system. Each participant in the system can make
modifications to the datatype without the need for explicit coordination with
other participants. CRDT implementations are designed so that coordination-
free updates which may conflict with one another always have a deterministic
resolution. This allows multiple participants to query and modify their view of
the replicated datatype, without the traditional overhead and implementation
burden that more stringent replication algorithms require.

Here, we’ll discuss three variants of CRDTs: state-based, op-based, and
δ-state based. Each of these variants achieve a consistent value by the use of
different message types, and each likewise requires a different set of delivery
semantics. In this chapter, we identify δ-state CRDTs as achieving an appealing
set of trade-offs among each of the three variants. We restate that they are able
to achieve SEC (the best reasonably-achievable consistency guarantee for most
CRDT applications) while maintaining both:

• A relatively small payload size, as is the benefit of op-based CRDTs, and

• Relatively weak delivery semantics, as is the benefit of state-based CRDTs.

2.2 coordinated replication

In a distributed system, it is common for more than one participant to need
to have a view of the same data. For example, multiple nodes may need to
have access to the same internal data structures necessary to execute some
computation. When a piece of data is shared among many participants in a
system, we say that that data is replicated.

6

2.3 distributed consensus algorithms 7

However, saying only that some data is “replicated” is underspecified. For
example: how often is that data updated among multiple participants? How
does that data behave when multiple participants are modifying it concurrently?
Do all participants always have the same view of the data, or are there temporary
divergences among the participants in the system?

It turns out that the answer to the last question is of paramount importance.
Traditionally speaking, in a distributed system, all participants have an identical
replica of any piece of shared data at all times. That is, at no moment in time
will there be a replica that could atomically compare its replicated value for
some data with any other replica for equality and disagree. Said otherwise,
all replicated values are equal everywhere all at once. This is an appealing
property to say the least, because it allows system designers to conceptually
treat a distributed system as a single unit of computation. That is, if all replicas
maintain the same memory, it is conceptually as if one whole machine is being
replicated many times.

That being said, upholding this requirement is not a straightforward task.
Some question that arise are: who coordinates when updates to a piece of
data are replicated to other participants in the system? What happens when
the coordinator becomes unresponsive, or otherwise misbehaves? Who is
responsible for electing a new participant to take over the coordination duties
of the participant which was no longer able to fulfill them?

2.3 distributed consensus algorithms

These questions give rise to the area of consensus algorithms. Broadly speaking,
a consensus algorithm is a routine which multiple participants follow in order
to agree on a shared value.

We first state briefly the properties that an algorithm must have to solve
distributed consensus from Howard [2019]:

Definition 2.1 (Distributed Consensus Algorithm). An algorithm is said to solve
distributed consensus if it has the following three safety requirements:

1. Non-triviality: The decided value must have been proposed by a participant.

2. Safety: Once a value has been decided, no other value will be decided.

3. Safe learning: If a participant learns a value, it must learn the decided value.

In addition, it must satisfy the following two progress requirements:

1. Progress: Under previously agreed-upon liveness conditions, if a value is pro-
posed by a participant, then a value is eventually decided.

2. Eventual learning: Under the same conditions as above, if a value is decided,
then that value must be eventually learned.

2.4 consistency guarantees 8

The two most popular algorithms in this field are Paxos and Raft [Howard
and Mortier, 2020, Lamport, 1998, Ongaro and Ousterhout, 2014]. Each im-
plements distributed state-machine replication and can be used to implement
linearizable systems. Both of these systems are notoriously difficult to under-
stand and implement correctly in practice [Howard and Mortier, 2020]. The
topics often appear in undergraduate-level courses in Distributed Systems,
and have been the subject of extensive verification effort to date [Wilcox et al.,
2015]. Often, these distributed systems verification efforts require an enormous
amount of effort. In a companion paper Woos et al. [2016] use on the order of
45,000 lines of proof scripts to verify the complete Raft protocol in their system.

It is natural to ask what is the property of these systems that makes them
difficult to implement or reason about correctly in practice. One possible answer
is to look at the stringent safety requirements (that is, that once a value has
been decided, no other value(s) will be decided) in these algorithms.

CRDTs are a natural response to this. By allowing participants to temporarily
diverge from the state of the overall computation (cf., the second property of
Definition 1.1), CRDTs allow replicas to violate the safety property of Defini-
tion 2.1. By giving up the immediacy and permanence that the safety properties
of a traditional distributed consensus algorithm, CRDTs allow for a dramatically
lower implementation burden in practice, and are substantially easier to reason
about.

2.4 consistency guarantees

CRDTs are said to attain a weaker form of consistency known as strong eventual
consistency [Shapiro et al., 2011]. SEC is a refinement of eventual consistency (EC).
Informally, EC says that reads from a system eventually return the same value
at all replicas, while SEC says that if any two nodes have received the same set
of updates, they will be in the same state.

EC and the SEC extension are natural answers to the question we pose in
Section 2.3. That is, we posit that it is the safety requirement in traditional
Distributed Consensus Algorithms which make them difficult to implement
correctly. EC makes only a liveness guarantee, and so on its own it is not a
sufficient solution for handling distributed consensus in an environment with
relaxed requirements. SEC, however, does add a safety guarantee, but the
precondition (namely that only nodes which have received the same set of
updates will be in the same state) makes it possible to relax our requirements
around network delays, or particulars of a CRDT algorithm which do not send
updates to all other replicas immediately.

In short, we believe that it is this relaxation–that is, that CRDTs are only
required to be in the same state eventually, conditioned on which updates they
have and have not yet received–which makes SEC an appealing consistency

2.4 consistency guarantees 9

property for distributed systems which more relaxed requirements than would
be satisfied by a linearizable system.

We discuss each of these consistency classes in turn.

2.4.1 Eventual Consistency

EC captures the informal guarantee that if all clients stop submitting updates to
the system, all replicas in the system eventually reach the same value [Shapiro
et al., 2011]. More formally, EC requires the following three properties [Shapiro
et al., 2011]:

1. Eventual delivery. An update delivered at some correct replica is eventually
delivered at all replicas.

∀r1, r2. f ∈ (delivered r1)⇒ ♦ f ∈ (delivered r2)

2. Convergence. Correct replicas which have received the same set of updates
eventually reflect the same state.

∀r1, r2. � (delivered r1) = (delivered r2)⇒ ♦ � q(r1) = q(r2)

3. Termination. All method executions terminate.

(For readers unfamiliar with modal logic notation, we use ♦ to precede
a logical statement that is true at some time, whereas we use � to precede a
logical statement that is true at all times.)

EC is a relatively weak form of consistency. In Shapiro et al. [2011], it is
observed that EC systems will sometimes execute an update immediately only
to discover that it produces a conflict with some future update, and so frequent
roll-backs may be performed. This imposes an additional constraint, which is
that replicas need to form consensus on the “standard” way to resolve conflicts
so that the same conflicts are resolved identically at different replicas.

We devote some additional discussion to the first property of EC. Eventual
delivery requires that all updates delivered to some correct replica are eventually
delivered to all other correct replicas. This property alone permits too much of
the underlying network, and so it can make it difficult to reason about strong
consistency guarantees over an unreliable network.

Take for an example a network which never delivers any messages. In this
case, the precondition for eventual delivery is not met, and so we are relieved of
the obligation to prove that updates are propagated to other replicas, since they
aren’t delivered anywhere in the first place. However, consider a network which
delivers only the first message sent on it, and then drops all other messages.
In this case, it is possible that a replica will receive some update, attempt to
propagate it to other replicas, only for them to never be delivered.

2.4 consistency guarantees 10

To resolve this conflict in practice, one of two approaches is often taken. In
the first approach, assume a fair-loss network [Cachin et al., 2011] in which
each message has a non-zero probability of being delivered. To ensure that
messages are delivered, each node sends each message an infinite number
of times over the network, such that it will be delivered an infinite number
of times.1 This resolves the eventual delivery problem since we assumed a
sufficient (but weaker) condition of the underlying network, and then showed
it is possible to implement eventual delivery on top of these network semantics.

In the second approach, we first consider a set of delivery semantics P which
predicates allowed and disallowed network behaviors. Typically, P is assumed
to preserve causal order.2 We then refine P to ensure that the properties of EC
(and SEC) can be implemented on top of the network, resolving our problem
by discarding degenerate network behaviors.

2.4.2 Strong Eventual Consistency

Another downside of implementing a system which only upholds EC is that EC
is merely a liveness guarantee. In particular, EC does not impose any restriction
on nodes which have received the same set or even sequence of messages. That
is, a pair of replicas which have received the exact set of messages in the exact
same order are not required to return the same value.

SEC addresses this gap by imposing a safety guarantee in addition to the
previous liveness guarantees in EC. That is, a system is SEC when the following
two conditions are met:

1. The system is EC, per above guidelines.

2. Strong convergence. Any pair of replicas which have received the same set
of messages must return the same value when queried immediately.

∀r1, r2. (delivered r1) = (delivered r2)⇒ q(r1) = q(r2)

That is, it is the strong convergence property of SEC that distinguishes it
from EC. On top of EC, strong convergence is only a moderate safety restriction.
In particular, it imposes no requirements on replicas which have not received the
same sequence or even set of updates. So, unlike strong distributed consensus
algorithms like Paxos or Raft which are fully linearizable [Lamport, 1998,
Ongaro and Ousterhout, 2014], SEC allows certain replicas to be “behind.” That
is, a replica which hasn’t yet received all relevant updates in the system is
allowed to return an earlier version of the computation.

1 This approach is due to Martin Kleppman over e-mail, but can also be found in the literature,
for eg., Shapiro et al. [2011].

2 This is a standard assumption [Gomes et al., 2017, Shapiro et al., 2011], and can be implemented
by assigning a vector-clock and/or globally-unique identifier (UID) to each message at the
network layer.

2.5 state-based crdts 11

Informally, this means that replicas in the system are allowed to temporarily
diverge from the state of the overall computation. As soon as no more updates
are sent to the system, property (1) of EC requires that all replicas will eventually
converge to a uniform view of the computation.

2.5 state-based crdts

Now that we have discussed EC and SEC, we will turn our attention to datatypes
that implement these consistency models. CRDTs are a common way to imple-
ment the consistency requirements in SEC. So, we begin with a discussion of
state-based CRDTs from their inception in Shapiro et al. [2011]. A state-based
CRDT is a 5-tuple (S, s0, q, u, m). An individual replica of a state-based CRDT

is at some state si ∈ S for i ≥ 0, and is initially s0. The value may be queried
by any client or other replica by invoking q. It may be updated with u, which
has a unique type per CRDT object. Finally, m merges the state of some other
remote replica. Neither q nor u have pre-determined types, per se, rather they
are implementation specific. We discuss a pair of examples to illustrate this
point in Chapter 3.

Crucially, the states of a given state-based CRDT form a partially-ordered
set 〈S,v〉. This poset is used to form a join semi-lattice, where any finite subset
of elements has a natural least upper-bound. Consider two elements sm, sn ∈ S.
The least upper-bound s = sm t sn is given as:

∀s′. s′ w sm, sn ⇒ sm v s ∧ sn v s ∧ s v s′

In other words, a s = sm t sn is a least upper-bound of sm and sn if it is the
smallest element that is at least as large as both sm and sn.

2.5.1 Merging states

For now, we set aside q and u, and turn our attention towards the merging
function m. m resolves the states of two CRDTs into a new state, which is then
assigned at the replica performing the merge. Given a suitable set of states
which forms a lattice, we assume that:

m(s1, s2) = s1 t s2

for some join semi-lattice with join operation t, and that whenever a CRDT

replica r1 at state s1 receives an update from another replica r2 at state s2, that
r1 attains a new state s′1 = m(s1, s2). This process, in addition to each replica
periodically broadcasting an update which contains its current state, is carried
on continually, and m is invoked whenever a new state is received. That is, each
replica is evolving over time in response to outside instruction, and in turn
these updates cause internal state transitions, which themselves cause those
new states to be broadcast and eventually joined at every other replica.

2.5 state-based crdts 12

The t operator has three mathematical properties that make it an appealing
choice for joining states together as in m. These are its commutativity, associativity,
and idempotency. That is, for any states s1, s2, and s3, that:

• The operator is commutative, i.e., that s1 t s2 = s2 t s1, or that order does
not matter.

• The operator is idempotent, i.e., that (s1 t s2)t s2 = s1 t s2, or that repeated
updates reach a fixed point.

• Finally, the operator is associative, i.e., that s1 t (s2 t s3) = (s1 t s2) t s3,
or that grouping of arguments does not matter.

These mathematical properties correspond to real-world constraints that
often arise naturally in the area of distributed systems. We provide examples
for each of these three properties below:

commutativity Take, for example, that messages may occur out of order.
This often happens in, for example, UDP (User Datagram Protocol) networks,
where the received datagrams are not guaranteed to be in the order that they
were sent. Because t is commutative, replicas joining the updates of other
replicas do not need to receive those updates in order, because the result of
s1 t s2 is the same as s2 t s1. That is, it does not matter which of two updates
from another replica arrives first, because the result is the same no matter in
which order they are delivered.

For concreteness, say that we have two replicas, r1 and r2. r1 initially begins
at state s, and r2 progresses through states s1, . . . , sn for n > 0. We then see that
it does not matter the order in which these updates are delivered to r1. Suppose
that we have a bijection π : [n]→ [n] which maps the true order of a state si to
the order in which it was delivered. Then, we can see that the choice of π is
arbitrary, because:

s← s t (sπ(1) t · · · t sπ(n))

for any choice of π, because

sπ(1) t · · · t sπ(n) = s1 t · · · t sn

which follows from the fact that t is commutative. This can be shown induc-
tively on the number of updates, n, given the commutativity of t.

idempotency Next, it is often common for packets to be duplicated in
transit over a network. That is, even though a packet may be sent from a source
only once, it may be received by a recipient on the same network multiple times.
For this, the idempotency of t comes in handy: no matter how many times a
state is broadcast from an evolving replica, any other replica on the network
will tolerate that set of messages, because it only requires the message to be
delivered once. Any additional duplicates are merged in without changing the
state.

2.6 op-based crdts 13

associativity Finally, associativity is an appealing property, too, although
its applications are both less immediate and less often-used in this thesis.
Suppose that several replicas of a state-based CRDT reside on a network with,
say, high latency, or it is otherwise undesirable to send more messages on the
network than is necessary. Because associativity implies that the grouping
of updates is arbitrary, a replica can maintain a set of pending updates, and
periodically send that set to other replicas by first folding t over it and sending
a single update.3

2.6 op-based crdts

Operation-based (op-based) CRDTs evolve their internal states over time, but
these states need not necessarily form a semi-lattice. Likewise, the communica-
tion style of op- and state-based CRDTs differ fundamentally: op-based CRDTs

communicate operations that indicate a kind of update to be applied locally,
instead of the result of that update (as is the case in state-based CRDTs).

An op-based CRDT is a 6-tuple (S, s0, q, t, u, P). As in Section 2.5, S, s0, and
q, retain their original meaning (that is, the state set, an initial state, and a
query function). In op-based CRDTs, the pair (t, u) takes the place of the m
merging function from state-based CRDTs. t and u correspond to prepare-update
and effect-update, respectively. When an update is made by a caller (say, for
example, incrementing the value of an op-based CRDT counter), it is done in
two phases [Shapiro et al., 2011]:

1. First, the prepare-update implementation t is applied at the replica receiving
the update. t is side-effect free, and prepares a representation of the
operation about to take place.

2. Then, the effect-update implementation u is applied at the local and remote
replicas if and only if the delivery precondition P is met, causing the
desired update to take effect. P is interpreted temporally [Shapiro et al.,
2011], and is a precondition on whether or not operations necessary
to process the current operation have already been incorporated into
the CRDT’s state. P is traditionally assumed to be disabled until all
messages which happened before the current message have been delivered,
preserving causality.

This is the critical distinction between op- and state-based CRDTS: state-
based CRDTs propagate their state by applying a local update and taking
advantage of the lattice structure of their state-space in order to define a
convenient merge function. On the other hand, op-based CRDTs propagate

3 “Periodically” is arbitrary and is left up to the implementation, but it would be easy to imagine
that this could be interpreted as whenever the set reaches a certain size, and/or after a certain
amount of time has passed since flushing the set of pending updates.

2.7 δ-state crdts 14

their state by sending the representation of an update to other replicas as an
instruction. This critical juncture translates into a corresponding relaxation in
the operation (t, u), which is that unlike the state-based CRDTs whose m must be
commutative, associative, and idempotent, and op-based CRDT implementation
of (t, u) need only be commutative.

To explain why, we briefly restate the definition of a causal history for
op-based CRDTs:

Definition 2.2 (op-based Causal History [Shapiro et al., 2011]). An object’s casual
history C = {c1, . . . , cn} is defined as follows. Initially, c0

i = ∅ for all i ∈ I . If
the kth method execution is idempotent (that is, it is either q or t), then the causal
history remains unchanged in the kth step, i.e., that ck

i = ck−1
i . If the execution at k is

non-idempotent (i.e., it is u), then ck
i = ck−1

i ∪ {uk
i (·)}.

Causal history of an op-based CRDT is defined based on the happens-before
relation→ as follows. An update (t, u) happens before (t′, u′) (i.e., that (t, u)→
(t′, u′)) iff u ∈ c

Kj(t′)
j if Kj is the injective mapping from operation to execution

time. Shapiro and his co-authors go on to describe a sufficient definition for the
commutativity of (t, u) in op-based CRDTs. In effect, they say that two pairs
(t, u) and (t′, u′) commute if and only if for any reachable state s ∈ S the effect
of applying them in either order is the same. That is, s ◦ u ◦ u′ ≡ s ◦ u′ ◦ u.

They claim that having commutativity for concurrent operations as well as
an in-order delivery relation P for comparable updates is sufficient to prove
that op-based CRDTs achieve SEC.

2.7 δ-state crdts

In this section, we describe the refinement of CRDTs that is the interest and focus
of the body of this thesis. That is the δ-state CRDT, as described in Almeida
et al. [2018]. In their original work, Almeida and his co-authors describe δ-state
CRDTs as:

...ship[ping] a representation of the effect of recent update operations
on the state, rather than the whole state, while preserving the idem-
potent nature of join.

We will present an example of the δ-state CRDT in a below section. For
now, we focus on the background material necessary to contextualize δ-state
CRDTs. This refinement can be thought of as taking ideas from both state- and
op-based CRDTs to mediate some of the trade-offs described above. Like a
state-based CRDT, δ-state based CRDTs have both internal states and message
payloads that form a join semi-lattice. This endows the δ-state CRDT with a
commutative, associative, and idempotent join operator, as before. Likewise,

2.7 δ-state crdts 15

this means that the δ-state CRDT supports relaxed delivery semantics, such as
delayed, dropped,4 reordered, and duplicated message delivery.

Unlike a state-based CRDT, however, δ-state CRDTs do not send their internal
state sk after an update at time k− 1. We require that these states have natural
representations of their updates which do not require sending the full state to all
other replicas. In many circumstances, these updates can often be represented
as “smaller” items within the set of all possible reachable states. For example,
in a CRDT which supports adding to a set of items, a δ-mutation may be the
singleton set containing the newly-added item, whereas a traditional state-based
CRDT may include the full set.

This means that:

• δ-state CRDTs support the same weak requirements from the network as
ordinary state-based CRDTs. That is, they support dropping, duplicating,
reordering, and delaying of messages.

• δ-state CRDTs have similarly low-overhead of message size as op-based
CRDTs.

On the converse, δ-state CRDTs do not:

• ...have potentially large payload size, as state-based CRDTs are prone to
have.

• ...require a strong delivery semantics P that ensures ordered, at-most-once
delivery as op-based CRDTs do.

Said otherwise, δ-state CRDTs have the relative strengths of both state- and
op-based CRDTs without their respective drawbacks. This makes them an area
of interest, and they are the subject to which we dedicate the remainder of this
thesis.

4 In this thesis, we consider dropped messages as having been delayed for an infinite amount of
time, allowing us to reason about a smaller set of delivery semantics.

3
E L E M E N TA RY CRDT I N S TA N T I AT I O N S

In this chapter, we provide the specification of two common CRDT instantiations
in an op-, state-, and δ-state based style. We discuss the Grow-Only Counter
(G-Counter) and Grow-Only Set (G-Set). Both of these will be the subject of our
verification efforts in Chapter 5.

In each of the below, we assume that I refers to the set of node identifiers
corresponding to the active replicas. In this thesis, we consider I to be fixed
during execution; that is, we do not support addition or deletion of replicas.
In practice, CRDTs do support a dynamic set of replicas, but we make this
assumption for the simplicity of our formalism.

3.1 example : grow-only counter

3.1.1 State-based G-Counter

The G-Counter supports two very simple operations: inc (increment), and query.
When inc is invoked, the counter updates its internal state to increment the
queried value by one. When query is invoked, the counter returns a number
which represents the number of increment operations that have occurred glob-
ally in the system, for which the replica processing the query knows about.
Note that this number is always at least as large as the number of times that inc
has been invoked at that replica, and never larger than the true value of times
inc has been invoked globally.

This is our first example of SEC, where replicas that are “behind,” i.e.,
that have not received all updates from all other replicas, are not guaranteed
to reflect the same value upon being queried.1 Concretely, suppose that an
inc has occurred at at least one other replica which has not yet broadcast its
updated state. The replica being queried will have therefore not yet merged the
updated state from the replica(s) receiving inc,2 and so those update(s) will not
be reflected in the value returned by querying.

We present a state-based G-Counter CRDT for concreteness, and then discuss
its definition:

1 Perhaps these messages were delayed or dropped in transit, or otherwise the other replicas have
not broadcast their updates yet. The latter is uncommon in traditional state-based CRDTs, but
is an often-used operation in variants of state-based CRDTs (including δ-state CRDTs) where
updates are bundled into intervals which are sent in a way that preserves causality of updates.

2 Because we cannot merge updates we do not know about.

16

3.1 example : grow-only counter 17

G-Counters =



S : N
|I|
0

s0 : [0, 0, · · · , 0]
q : λs. ∑

i∈I
s(i)

u : λs, i. s {i 7→ s(i) + 1}
m : λs1, s2. [max {s1(i), s2(i)} : i ∈ dom(s1) ∪ dom(s2)]

Figure 1: Specification of a state-based G-Counter CRDT.

Notice that the state space N
|I|
0 does not match the return type of the query

function, q, which is simply N0. In Figures 1 and 2, we utilize a vector counter,
which should be familiar to readers acquainted with vector clocks [Lamport,
1978].3

r1 : [0, 0]

r2 : [0, 0]

[1, 0]

[0, 1]

[1, 1]

[1, 1]

inc

inc

joi
n join

Figure 2: A correct execution of vector-based state G-Counters exchanging updates.

When an inc is invoked at the ith replica, it updates its own state to increment
by one the vector element associated with the ith replica, here denoted s{i 7→
s(i) + 1}. Finally, upon receiving an update from another replica, the pair-
wise maximum is taken on each of the vector elements. Note that this is a
commutative, associative, and idempotent operation, and so it forms the least
upper-bound of a lattice of vectors of natural numbers.

3.1.2 op-based G-Counter

In the op-based variant of the G-Counter, we can rely on a delivery semantics
P which guarantees at-most-once message delivery.4 From this, we say that
replicas which are “behind” have not yet received the set of all inc operations
performed at other replicas. Replicas which are “behind” may “catch up” when
they receive the set of undelivered messages. However, these replicas never are
“ahead” of any other replica, i.e., they never receive a message which doesn’t

3 Unlike traditional vector clocks, the vector counter only stores in each replica’s slot the number
of inc operations performed at that replica.

4 That is, the network is allowed to drop, reorder, and delay messages, but a single message will
never be delivered more than once.

3.1 example : grow-only counter 18

correspond to a single inc operation at some other replica, thus they need not
be idempotent.

We present now the full definition of the op-based G-Counter:

G-Countero =



S : N0

s0 : 0
q : λs. s
t : inc
u : λs, p. s + 1

Figure 3: Specification of an op-based G-Counter CRDT.

Because replicas are sometimes behind but never ahead, we know that the
number of messages received at any given replica is no greater than the sum of
the number of inc operations performed at other replicas, and the number of inc
operations performed locally. So, the op-based G-Counter needs only to keep
track of the number of inc operations it knows about globally, and this can be
done using a single natural number. Hence, S = N0, and the bottom state is 0.

The query operation q is as straightforward as returning the current state.
The prepare-update function t always produces the sentinel inc, indicating that
an increment operation should be performed at the receiving replica. Finally, u
takes a state and an arbitrary payload5 and returns the successor.

Another approach to specifying the op-based G-Counter CRDT would be to
more closely mirror the state-space of its state-based counterpart, as follows:

G-Counter′o =



S : N
|I|
0

s0 : [0, 0, · · · , 0]
q : λs. ∑

i∈I
s(i)

t : (inc, i))
u : λs, p. s{i 7→ s(i) + 1}

Figure 4: Alternative specification of an op-based G-Counter CRDT.

where i represents the local node’s identifier. Note that, while correct,
restrictive delivery semantics P do not require such a verbose specification,
since the at-most-once delivery guarantees allow us to simply increment our
local count each time we receive an update, since no updates are duplicated
over the network.

5 Unused in the implementation here, since the only operation is inc.

3.1 example : grow-only counter 19

3.1.3 δ-state based G-Counter

We conclude this subsection by turning our attention to the δ-state based
G-Counter. We begin first by presenting its full definition:

G-Counterδ =



S : N
|I|
0

s0 : [0, 0, · · · , 0]

qδ : λs. ∑
i∈I

s(i)

uδ : λs, i. {i 7→ s(i) + 1}
mδ : λs1, s2. {max {s1(i), s2(i)} : i ∈ dom(s1) ∪ dom(s2)}

Figure 5: Specification of a δ-state based G-Counter CRDT.

It is worth mentioning the extreme levels of similarity it shares with its state-
based counterpart. Like the state-based G-Counter, the δ-state based G-Counter
uses the state-space N

|I|
0 , and has s0 = [0, 0, · · · , 0]. Its query operation and

merge are defined identically.
However, unlike the state-based G-Counter, the δ-state based G-Counter

implements the update function as λs, i. {i 7→ s(i) + 1}. That is, instead of
returning the amended map (recall: s{· · · }), the δ-state based G-Counter
returns the singleton map containing only the updated index. Because of the
definition of m (namely, that it does a pairwise maximum over the union of the
domains of the two states), sending the singleton map is equivalent to sending
the full map with all other entries being equal.

r1 : [0, 0]

r2 : [0, 0]

[1, 0]

[0, 1]

[1, 1]

[1, 1]

incδ

incδ

jo
in

{r2
7→1}

join{r
1 7→

1}

Figure 6: A pair of vector-based δ-state G-Counters replicas exchanging updates with
each other.

This follows from the facts that: (1) the entry being updated has the same
pairwise maximum independent of all other entries in the map, and (2) the
pairwise maximum of all other entries does not depend on the updated entry. So,

3.2 example : g-set 20

taking the pairwise maximum of any state with the singleton map containing
one updated value is equivalent to taking the pairwise maximum with our own
state modulo one updated value. m is therefore referred to as a δ-mutator, and
the value it returns is an δ mutation [Almeida et al., 2018].

This principle of sending smaller states (the δ mutations) which communicate
only the changed information is a general principle which we will return to in
the remaining example.

3.2 example : g-set

The G-Set is the other primitive CRDT that we study in this thesis. In essence,
the G-Set is a monotonic set. In other words, the G-Set supports the insertion
and query operations, but does not support item removal. This is a natural
consequence of the state needing to form a monotone semi-lattice, where set
deletion would destroy the lattice structure.6

3.2.1 State-based G-Set

We begin our discussion with the state-based G-Set CRDT, the definition of
which we present below. This is our first example of a parametric CRDT instance,
where the type of the CRDT is defined in terms of the underlying set of items
that it supports.

G-Sets(X) =



S : P(X)

s0 : {}
q : λx. x ∈ s
u : λx. s ∪ {x}
m : λs1, s2. s1 ∪ s2

Figure 7: state-based G-Set CRDT

For some set X , we can consider the state-based G-Set CRDT instantiated
over it, G-Sets(X). The state-space of this CRDT is the power set of X , which
we denote P(X). Initially, the G-Set begins as the empty set, here denoted {}.
The three operations are defined as follows:

• The query function q is an unary relation, i.e., it determines which ele-
ments are contained in the G-Set.

6 To support removal from a CRDT-backed set, the 2P-Set is often used. Verifying this object is
left to future work, which we discuss in Section 6.1.

3.2 example : g-set 21

• The update function u produces the updated set formed by taking the
union of the existing set, and the singleton set containing the item to-be-
added.

• Finally, the merge function m takes the union of two sets.

Note crucially that the merge function ∪ defines the least upper-bound of two
sets, and thus endows our CRDT with a lattice structure. In this lattice of sets,
we say that for some set X , the lattice formed is 〈P(X),⊆〉.

3.2.2 op-based G-Set

In the op-based variant of the G-Set CRDT, we replace the state-based CRDT’s
update function u with the op-based pair (t, u). The state space, initial state,
as well as the query and merge functions (q and m, respectively) are defined
identically. We present the full definition as follows:

G-Seto(X) =



S : P(X)

s0 : {}
q : λx. x ∈ s
t : λx. (ins, x)
u : λp. s ∪ {(snd p)}
m : λs1, s2. s1 ∪ s2

Figure 8: op-based G-Set CRDT

The only difference between this CRDT instantiation and the state-based
one is in the definition of (t, u).7 In the state-based CRDT, we sent the updated
state, i.e., s ∪ {x}. In the op-based variant, we send a representation of the effect,
which we take to be the pair (ins, x), where ins is a sentinel marker indicating
that the second element in the pair should be inserted.

Upon receipt of the message (ins, x), our op-based G-Set CRDT computes
the new state s ∪ {(snd p)}, where p is the message payload.

3.2.3 δ-state based G-Set

Finally, we turn our attention to the δ-state based G-Set CRDT. As was the case
with the δ-state based G-Counter CRDT, this object is defined identically as to
the state-based counter, with the notable exception of its update function, u.8

7 This is a pattern that will become familiar during Chapter 5.
8 This again will be another familiar pattern in Chapter 5.

3.2 example : g-set 22

For full formality, we present its definition below:

G-Setδ(X) =



S : P(X)

s0 : {}
qδ : λx. x ∈ s

uδ : λx. {x}
mδ : λs1, s2. s1 ∪ s2

Figure 9: δ-state based G-Set CRDT

Here, the only difference is between the state- and δ-state based CRDT’s
definition of the update method, u. In the state-based G-Set, update was
defined as u : λx. s ∪ {x}. But in the δ-state based G-Set, the update is defined
as u : λx. {x}. Note crucially that these two kinds of updates are equal when
applied to the same local state. Consider a state- and δ-state based G-Set, both
starting at the same state st. For the state-based G-Set, we have:

m(st, u(x)) = st ∪ (st ∪ {x})
= (st ∪ st) ∪ {x}
= st ∪ {x}

whereas for the δ-based G-Set, we have directly:

mδ(st, uδ(x)) = st ∪ {x}

4
CRDT R E D U C T I O N S

This chapter outlines the key component of our proof strategy. We begin with a
reduction allowing us to convert from state- to op-based CRDTs. This reduction
is used in Chapter 5 to show a preliminary encoding of two state-based CRDTs.
We conclude with a reduction from δ-state to op-based CRDTs, which is used
extensively in the latter part of Chapter 5 to show that δ-state CRDTs achieve
SEC.

Specifically, we will discuss the following:

• In Section 4.1, we will describe a mapping φstate→op to reduce state-based
CRDTs to op-based CRDTs.

• In Section 4.2, we will describe a mapping φδ→op to reduce δ-state CRDTs

to op-based CRDTs.

We state these reductions as “maxims”. They are stated here in brief, but
we will return to them in Sections 4.1 and 4.2.

Maxim 4.1. A state-based CRDT is an op-based CRDT where the prepare-update
phase returns the updated state, and the effect-update is a join of two states.

Maxim 4.2. A δ-state based CRDT is an op-based CRDT whose messages are δ-
fragments, and whose operation is a pseudo-join between the current state and the δ

fragment.

4.1 state-based crdts as op-based

This section describes a reduction from state-based CRDTs to op-based CRDTs.
We describe this reduction to exemplify how to reduce between CRDT classes,
and use this in Chapter 5 to show that two state-based CRDTs achieve SEC.

Consider some state-based CRDT C = (S, s0, q, u, m). This object C has a set
of states S, an initial state s0, along with functions for querying the state (q),
updating its state (u), and merging its state with the state of some other object
(m). Our question is to define a mapping φ as follows:

φstate→op : (S, s0, q, u, m)︸ ︷︷ ︸
state-based CRDTs

−→ (S, s0, q, t, u, P)︸ ︷︷ ︸
op-based CRDTs

For our purposes, we view φstate→op as a homomorphism between state- and
op-based CRDTs.

23

4.1 state-based crdts as op-based 24

Note that P (the delivery precondition on the right-hand side) is the only
element which does not have a natural analog on the left-hand side. Tradi-
tionally it is common to have a P which preserves causality, but this is not
necessary for our proofs (since we map states identically as in the following
section). Therefore, we assume that P is always met, in which case delivery can
always occur immediately on the right-hand side.

We’ll now turn to describing the details of φstate→op, which for convenience
in this section, we’ll abbreviate as simply φ.1 To understand φ, we’ll consider
how it maps the state S (along with s0 and q) separately from how it maps the
update procedure u.

4.1.1 Mapping states under φ

Let us begin our discussion with a consideration to how φ maps the state S
from a state-based CRDT to an op-based one. In practice, it would be unrealistic
to treat the state space of a state-based CRDT as equal to that of its op-based
counterpart. Doing so would discard one of the key benefits of op-based CRDTs

over state-based ones, which is that they are often able to represent the same set
of query-able states using simpler structures. For example, state-based counters
(such as the G-Counters and PN-Counters) often use a vector representation to
represent the number of “increment” operations at each node, but op-based
counters often instead use scalars (cf., the examples in Section 3.1).

In order to make φ a simple reduction, we allow the state spaces of the
CRDT before and after the reduction to be identical. Though CRDT designers
can often be more clever than this in practice, this makes reasoning about the
transformation much simpler for the purposes of our proofs. Likewise, since
the query function q is defined in terms of the state-space, S, we let φ preserve
the implementation of q under the mapping, too.

4.1.2 Mapping updates under φ

Now that we have described the process by which φ maps S, s0, and q, we still
need to address the implementation of u and m under mapping. Our guiding
principle is the following theorem (which we state and discuss here, but have
not mechanized):

1 In the following section, we’ll define a new homomorphism between op- and δ-state based
CRDTs, at which point we will distinguish between the two mappings when it is unclear which
is being referred to.

4.2 δ-state based crdts as op-based 25

Theorem 4.1. Let Cs be a state-based CRDT with Cs = (S, s0, q, u, m). Define an
op-based CRDT Co as follows:

C0 =



So : S

s0
o : s0

qo : q
to : λp. u(p...)

uo : λs2. m(st, s2)

then, Co and Cs reach equivalent states given equivalent updates and delivery semantics.

Proof sketch. By simulation. Since s0
o = s0, both objects begin in the same state.

Since qo = q, if the state of Co and Cs are equal, then qo will reflect as much.
Finally, an update is prepared locally by computing the updated state-based
representation. That update is applied both locally and at all replicas by
merging the prepared state into Co’s own state, preserving the equality.

In other words, we decompose the update function of a state-based CRDT

into the prepare-update and effect-update functions of an op-based CRDT. Let
p be the set of parameters used to invoke the update function u of a state-
based CRDT, i.e., that u(p...) produces the desired updated state. Then the
prepare-update returns a serialized representation of u(p...), which is to say that
it returns the updated state. The effect-update implementation then takes that
representation and applies it by invoking the merge function m with the effect
representation and its own state to produce the new state.

This introduces Maxim 4.1, which unifies state- and op-based CRDTs as
behaving identically when the op-based CRDT performs a join of two states.
We restate this Maxim for clarity:

Maxim 4.1. A state-based CRDT is an op-based CRDT where the prepare-update
phase returns the updated state, and the effect-update is a join of two states.

4.2 δ-state based crdts as op-based

In the previous section, we described a general procedure for converting state-
based CRDTs into op-based CRDTs. In this section, we treat the insight from the
previous section as guidance for how to design a similar reduction to convert
δ-state CRDTs into op-based CRDTs. We will use this reduction to encode δ-state
CRDTs into the library presented in Gomes et al. [2017] in order to verify that
δ-state CRDTs are SEC.

Similarly as in the previous section, we describe a (new) mapping φδ→op of
type:

φδ→op : (S, s0, q, uδ, mδ)︸ ︷︷ ︸
δ-based CRDTs

−→ (S, s0, q, t, u, P)︸ ︷︷ ︸
op-based CRDTs

4.2 δ-state based crdts as op-based 26

For the same reasons as in Section 4.1.2, we let φ preserve the state space,
initial state, and query function. Again, we let P be the delivery precondition
which is always met (since messages exchanged are idempotent, and so there is
no need to preserve either causality or at-most-once delivery as is traditional).

In Section 4.1, we treated a state-based CRDT’s state as the representation of
the effect for an operation-based CRDT. In this section, we do the same for the
δ-state fragment, which we naturally think as a difference of two states.

Concretely, let t : S → S → T for some type T not necessarily equal to
S which represents the type of all δ-fragments. We define two examples as
follows:

• For the G-Set CRDT, the δ mutator, mδ produces the singleton set contain-
ing the element added in the last operation. Since only one item can be
added at a time, computing the following with the before- and after-states
is sufficient to generate the representation:

t = λs1, s2. s2 \ s1

where S = T = P(X). This is an example where the CRDT has a type
where both the state- and δ-state fragments are members of S.

• For the G-Counter CRDT, the δ mutator produces a pair type containing
the identifier of a node with a changed value, and the new value which is
assigned to that identifier. t is defined as:

t = λs1, s2. min
i∈I

s1[i] 6=s2[i]

(i, s2[i])

(Observe that this function is not defined for two states s1 = s2, nor does it
need to be, since the before- and after states are guaranteed to be different
after invoking uδ).

Here we have an example of T 6= S, where T instead equals ′id×N.

t is now capable of generating the δ-state fragment corresponding to any
pair of states from before and after and invocation of uδ. Now we need to
define the op-based CRDT’s implementation of u to recover a new state given a
value of type T. Here, let u : S→ T → S, which takes in a current state as well
as a δ-fragment and produces a new state.

Intuitively, u is a sort of inverse over the last argument and return value
of t. That is, where t was taking the difference of two states, u recovers that
difference into a new state. We define two example implementations of u as
follows:

• For the G-Set CRDT, the new state is recovered by taking the union of the
current state, along with the state carrying the new item. That is:

u = λs, t. s ∪ t

4.2 δ-state based crdts as op-based 27

• For the G-Counter CRDT, the new state is recovered by taking the old
state, and replacing the entry whose index is equal to the first part of an
update with the value described by the second part of that update.

Importantly, u and t needs to satisfy three important properties:

1. u and t can never work together to produce a state which is not by either
the current state, or the δ-fragment. That is, for any state s′, we must have
that:

∀s v s′. u(s, t(s, s′)) v s′

Or in other words, if our starting state is lower in the lattice than s′, taking
the δ-fragment between s and s′ and then re-applying that to s cannot
produce a new state which is w s′.

2. At all times, all replicas must reflect all updates performed at that replica.

3. All replicas which have received the same set of messages have the same
state.

Together, these properties are sufficient to re-introduce Maxim 4.2, which
we restate here for clarity:

Maxim 4.2. A δ-state based CRDT is an op-based CRDT whose messages are δ-
fragments, and whose operation is a pseudo-join between the current state, and the δ

fragment.

Therefore, we have a straightforward procedure for reasoning about δ-state
CRDTs in terms of op-based CRDTs, which is to convert any δ-state CRDT into
an op-based CRDT, and then use the existing framework of Gomes et al. [2017]
to mechanize that that CRDT achieves SEC.

5
E X A M P L E CRDTS U N D E R R E L A X E D N E T W O R K M O D E L

We have mechanized proofs that two state- and δ-state based CRDTs achieve
SEC. We relax the underlying network model to support non-unique messages
(Section 5.1), and then showed that both the state- and δ-state based G-Counter
and G-Set inhabit SEC (Sections 5.2 and 5.3). Finally, we present an alternative
encoding of the reduction in Chapter 4 for δ-state CRDTs (Section 5.4).

5.1 network relaxations

In Gomes et al. [2017], Gomes and his co-authors provided a network model
which makes the following set of assumptions:

1. All messages received by some node were broadcast by some other node.

2. All messages broadcast by some node were received by that node (i.e., all
messages are delivered locally in a reliable fashion).

3. All messages are unique.

These assumptions allow the network to drop, reorder, and delay messages in
transit.

Because op-based CRDTs only deliver updates once, it is traditional to
assume a delivery relation P which predicates the set of network executions
that we are allowed to reason about. For example, a network execution which
drops all messages in transit, or does not preserve causality cannot be shown
to exhibit SEC, and so it is not a member of the relation P. Such an assumption
is standard in the literature and goes back to the original work in Shapiro et al.
[2011].

In Gomes et al. [2017], the authors make extensive use of Isabelle’s locale
feature [Nipkow et al., 2002], which for our purposes we can consider as
Isabelle’s implementation of parametric proofs. Specifically, Gomes et al. [2017]
define a locale for SEC, which they call strong-eventual-consistency. To instantiate
this locale, CRDT replicas must meet the following preconditions:

• Messages which have a causal dependence are delivered in-order; con-
current messages may be delivered in any order (i.e., the ≺ relation is
preserved during delivery).

• The set of messages delivered at each node is distinct.1

1 Note that the messages transited by the network may be non-distinct. This is another standard
assumption which can be implemented by tagging each message with a vector clock or assigning
a globally unique identifier, and having each receiving node discard duplicates.

28

5.1 network relaxations 29

• That concurrent operations commute.

• That correct nodes do not fail, i.e., that they remain responsive during the
execution.

While we consider the above to be a reasonable delivery semantics, we
wish to relax the network model in order to support duplicated messages.
This behavior is not permitted by the original network model in Gomes et al.
[2017], which assumes that each message in transit on the network has a unique
identifier.

To see this, consider the following example:

Example 5.1. Consider two systems which have multiple replicas of CRDT counters.
System A uses op-based counters, and system B uses state-based counters. Consider
two replicas in each system, call these r1 and r2. Suppose the following happens in each
system:

• A inc operation is performed at replica r1, which causes a message to be sent to all
other replicas. In system A, this message is [1, 0, · · · , 0], and in system B this
messages is inc.

• While in route to replica r2, this message is duplicated, and both copies are
received at replica r2.

Notice that q(r2) results in a different value based on whether or not you queried
the replica belonging to system A or system B. In system A, the duplicate message is

“ignored,” since merging the same message twice is idempotent due to t, and q(r2) = 1
as expected. In system B, the additional update is applied, meaning that q(r2) = 2,
which is a safety violation.

So, while it is often a safety violation for an op-based CRDT to receive the
same message twice,2 state- and δ-state based CRDTs can and should tolerate
this class of degenerate behaviors.

The general principle is as follows:

Theorem 5.1. State-based CRDTs exhibit SEC even when operating in a network
environment permitting non-unique messages.

Proof. By induction on the number of times i a message m′ is received. When
i = 1, the goal is trivially established. When i > 1, the idempotency of t shows
that:

m tm′ t · · · tm′︸ ︷︷ ︸
i− 1 times

t m′ = m tm′ tm′ = m tm′

where the second equality follows from the inductive hypothesis, and the third
from the fact that m′ tm′ = m′ by the idempotency of t.

2 This is the primary reason why it is a standard assumption of op-based network models to
disallow non-unique messages

5.1 network relaxations 30

This result guides our approach as follows: to show a stronger result
that uses Theorem 5.1 (i.e., that state- and δ-state based CRDTs achieve SEC no
matter how many times), the network model originally presented in Gomes et al.
[2017] should be extended to remove the assumption that message identifiers
are unique.

5.1.1 Delivery Semantics

In their original network model, the authors of Gomes et al. [2017] use an
Isabelle locale in order to parameterize varying instantiations of the network
based on certain assumptions. They provide the following definition for the
Network locale [Gomes et al., 2017]:

locale network = node-histories history
for history :: nat⇒ ′msg event list +
fixes msg-id :: ′msg⇒ ′msgid
assumes delivery-has-a-cause:

[[Deliver m ∈ set (history i)]] =⇒ ∃ j. Broadcast m ∈ set (history j)
and deliver-locally: [[Broadcast m ∈ set (history i)]] =⇒ Broadcast m @i Deliver m
and msg-id-unique: [[Broadcast m1 ∈ set (history i);

Broadcast m2 ∈ set (history j);
msg-id m1 = msg-id m2]] =⇒ i = j ∧ m1 = m2

Figure 10: Isabelle specification of the Network locale as given in Gomes et al. [2017].

In order to extend the network model of Gomes et. al. to support duplicated
messages, we need to remove the assumption msg-id-unique, which allows the
enclosed proofs to assume that messages have unique identifiers. While this
assumption is part of the locale, proofs are allowed to assume that if two
messages m1 and m2 with the same identifier (i.e., that msg-idm1 = msg-idm2)
exists in the history of two nodes, that either the two nodes or two messages
are identical.

Although our proofs are still instantiated after fulfilling the qualifier P,
we still wish to reason about an expanded set of network executions which
includes message dropping.3

For our purposes, we begin by specifying a relaxed network locale as follows:

3 Since op-based CRDTs require causality-preserving semantics P, we cannot remove the depen-
dence on P without substantial alternation to the library. We leave this to future work, and
discuss it in greater detail in Chapter 6.

5.1 network relaxations 31

locale network = node-histories history
for history :: nat⇒ ′msg event list +
fixes msg-id :: ′msg⇒ ′msgid
assumes delivery-has-a-cause:

[[Deliver m ∈ set (history i)]] =⇒ ∃ j. Broadcast m ∈ set (history j)
and deliver-locally: [[Broadcast m ∈ set (history i)]] =⇒ Broadcast m @i Deliver m

Removing this assumption immediately invalidates many of the proofs
contained within the network locale. These proofs are broken due to a variety
of reasons, ranging from something as simple as referencing a now-missing
assumption, to more complex issues, e.g., a proof which relies on the uniqueness
of delivered messages.

We now describe our strategy for repairing these proofs:

1. First, remove the assumption msg-id-unique from the network-with-ops lo-
cale, as above.

2. Identify the set of broken proofs. In each broken proof, do the following:

(a) Identify the earliest broken proof step.

(b) Delete it and all proof steps following it.

(c) Replace the proof body with the term sorry.

3. In any order, consider a proof which ends with sorry, and repair the
proof.

In total, there were four (4) key lemmas which needed repair. These were:
hb-antisym, hb-has-a-reason, hb-cross-node-delivery, and hb-broadcast-broadcast-order.
After removing the msg-id-unique assumption, each of the above four proofs
were able to be repaired automatically by Isabelle’s proof search procedure
sledgehammer [Nipkow et al., 2002].

In each of the CRDTs that we do verify, we are required to instantiate a
lemma stating:

apply-operations xs = apply-operations ys

where xs and ys are lists of messages delivered to a pair of replicas by the
network. In other words, no matter what messages are delivered in what order,
the two replicas attain the same state. Following the original proofs provided
for op-based CRDTs in Gomes et al. [2017], our proofs of this lemma make the
standard assumption that:

set (node-deliver-messages xs) = set (node-deliver-messages ys)

Note that although we require that the set of operations delivered at two nodes
is identical in order for those two nodes to attain the same value, we are able
to reason over an expanded set of network behaviors. For example, if some

5.2 state-based crdts 32

message m appears in either of the two sets above, we know that it only appears
in that node’s history once, by the msg-id-unique assumption. But without that
assumption, we know instead that it appears at least once in each of the node’s
log of history.

This is a key distinction, since not knowing how many times a message was
delivered to either of the two replicas means that we are able to conclude that
they reach the same state if the same set of messages is delivered at least once
to each of the replicas. Said otherwise, it does not matter how many times
a message was delivered at each of two replicas, so long as it was delivered
at least once at both. This allows us to exercise the latter case of Example 5.1
using the relaxed network model.

5.2 state-based crdts

Equipped with a relaxed network model, we are now ready to verify two
examples of state-based CRDTs.

5.2.1 State-based G-Counter

We begin first with the G-Counter, the formal definition of which can be found
in Section 3.1. Following our intuition in Maxim 4.1, we define a type to
represent the state and operation of a state-based G-Counter, presented below:

type-synonym (′id) state = ′id⇒ int option
type-synonym (′id) operation = ′id state

Figure 11: Isabelle definitions for state and operation for a state-based G-Counter CRDT.

Here, we let the state be a partial mapping from a transparent ′id type (the
value of which uniquely identifies a replica in the system) to an int which
specifies the number of increment operations performed at that replica. Like
in Section 3.1, this defines a vector-like object, where each slot in the vector
corresponds to the number of increment operations performed at some unique
replica in the system. We define this mapping to be partial, where the None
value signals that no increments have been performed at a given node.4

Next we define the operation to be a type-level synonym for the ′id state
type. This encodes that operations are states. We interpret that upon receipt of
an operation that we replace our current state with the join of it and the state
encoded by the operation, which is an implementation of Maxim 4.1.

Before introducing the interpretation of gcounter-op (which will be respon-
sible for performing this join operation as described), we look at a few other
functions which are defined to act over this type:

4 This choice is arbitrary, and could have easily have been implemented as mapping to 0 instead.

5.2 state-based crdts 33

fun option-max :: int option⇒ int option⇒ int option where
option-max (Some a) (Some b) = Some (max a b) |
option-max x None = x |
option-max None y = y

fun inc :: ′id⇒ (′id state)⇒ (′id operation) where
inc who st = (case (st who) of

None⇒ st(who := Some 0)
| Some c⇒ st(who := Some (c + 1)))

Figure 12: Isabelle definitions for state-based G-Counter-related functions.

The function inc specifies (for demonstration purposes) how to increment
the value in a vector for some node. That is, inc specifies the procedure to
execute when an increment operation is performed at some replica. Since our
proofs reason purely about transitions of states, and not the external forces that
drive them, this function is never called by our proofs, but merely left for the
reader as a demonstration of how to drive the system.

The other function option-max specifies the pair-wise maximum of two
int option values. Note that these are the right-hand side of the mapping in
′id state, and so this function is used to merge the state received from some other
replica. We will prove some additional facts about this function shortly, but for
now we interpret it as taking the maximum of two optional integers, where a
present integer is always preferred over an absent one,5 and the maximum of
two absent integers is None.

Now that we have a way to interpret the pair-wise maximum of two states
which constitute a join, we can specify our definition of the “operation” for a
state-based G-Counter CRDT. Recall that as in Maxim 4.1, we need to specify
an operation which is the join of two states. We present now the definition as
used in our proofs:

fun gcounter-op :: (′id operation)⇒ (′id state) ⇀ (′id state) where
gcounter-op theirs ours = Some (λ x. option-max (theirs x) (ours x))

Figure 13: Isabelle definition for the “operation” of a state-based G-Counter CRDT.

Here, we specify a function that produces a partial mapping from an oper-
ation and state to a new state. The function is not total (that is, it can return
None for some input) to indicate a crash. For our purposes, we do not specify
such a case, and so the function always returns Some for any input.6 Here, the
state on the left-hand side indicates the state that our replica currently has. The

5 That is, the maximum of Some x and None is Some x.
6 Note that this None is different from the partial mapping of the ′id state type, which specifies that

the count of increment operations at some replicas may zero. Returning None from gcounter-op
indicates that there is no state at all, i.e., a crash has occurred.

5.2 state-based crdts 34

“operation” so-to-speak is the state at some other replica. By encoding the state
from a remote replica in this fashion, we are implicitly saying that this state
should be joined with our current state, and that the result of this join should
replace our current state. So, we return a new state, which is a function which
maps node identifiers to the maximum of the associated value between our
previous state, and the state at some other replica.

For example, if our state in a four-replica system is:

{r1 : 1, r2 : ⊥, r3 : 2, r4 : ⊥}

and the state of some replica is:

{r1 : ⊥, r2 : 1, r3 : 3, r4 : ⊥}

the resulting state is:
{r1 : 1, r2 : 1, r3 : 3, r4 : ⊥}

In Isabelle, we encode this as a function which forms a closure over the local
and remote states, and then computes the maximum some given node identifier
x. In practice, this is the lazy equivalent to computing all of the values up front
upon merging.

Now that we have an instantiation of how to modify and merge states (the
equivalent of the u and m), it remains to show that this is a suitable instantiation
of the strong-eventual-consistency locale.7

A first-try instantiation shows that it is not possible to do so without
additional proofs. Upon inspecting the unmet goals, we can deduce that
Isabelle wants a proof of the commutativity and associativity of option-max, the
key function used to implement the merge of two states. We leave the full
definitions of these proofs to Section A.1; most are able to be completed with
induction and term simplification only, and so are not of great interest to this
section.

Once we have a proof of commutativity and associativity (Isabelle can infer
that option-max is idempotent automatically), we then state an important lemma
and corollary, which are as follows:

lemma (in gcounter) concurrent-operations-commute:
assumes xs prefix of i
shows hb.concurrent-ops-commute (node-deliver-messages xs)
using assms
apply(clarsimp simp: hb.concurrent-ops-commute-def)
apply(unfold interp-msg-def , simp)
done

Figure 14: Isabelle proofs that concurrent operations commute in the state-based
G-Counter.

7 Recall that instating this locale is equivalent to a proof that the object it is being instantiated
with has SEC.

5.2 state-based crdts 35

corollary (in gcounter) counter-convergence:
assumes set (node-deliver-messages xs) = set (node-deliver-messages ys)

and xs prefix of i
and ys prefix of j

shows apply-operations xs = apply-operations ys
using assms by(auto simp add: apply-operations-def intro: hb.convergence-ext
concurrent-operations-commute

node-deliver-messages-distinct hb-consistent-prefix)

Figure 15: Isabelle proofs that the state-based G-Counter is convergent.

This and the above proof establish the following two lemmas:

• Operations that have been delivered at some node can be applied in any
order up to causality and still achieve the same state (there is a more
general result, since all operations on the G-Counter are concurrent, but
we specialize to showing a more specific case to guide Isabelle’s reuse of
the proof).

• Having the same set of operations delivered at any two replicas ensures
that those replicas are in the same state.

The first property is a helpful lemma which is used in internal proofs, but
the second lemma should be familiar to the reader: this is the safety property
of SEC! Note also that this is the first time that we are seeing our efforts in
relaxing the network model bear fruit. That is, even though the two sets must
be equal, we do not make a restriction on the number of times that a particular
message is delivered at either node. This allows us to prove a stronger result
that this CRDT achieves a consistent result despite the number of times that a
message was (or was not) duplicated.

Finally, once we have shown these two properties, we can instantiate the
strong-eventual-consistency locale, which is witness to the fact that this CRDT

object achieves SEC. We present the instantiation now, and leave the proof to
Section A.1:

sublocale sec: strong-eventual-consistency weak-hb hb interp-msg
λops. ∃ xs i. xs prefix of i ∧ node-deliver-messages xs = ops λ x. None

Figure 16: Isabelle proof that the state-based G-Counter CRDT is SEC.

Incidentally by this point, the proof that SEC is inhabited by our encoding
of the G-Counter SEC is mostly automatic, up to giving Isabelle some hints
about rewrite and simplification rules that it should apply.

5.2.2 State-based G-Set

Now that we have verified a state-based G-Counter CRDT, we turn our attention
to the other CRDT object for study in this thesis. This will be the state-based

5.2 state-based crdts 36

G-Set, which is described in detail in Section 3.2. Readers may notice that the
remaining sections in this chapter are shorter and shorter as we build up and
reuse techniques from earlier proofs in later ones.

For now, we begin with an instantiation of the state-based G-Set CRDT, as
follows:

type-synonym (′a) state = ′a set
type-synonym (′a) operation = ′a state

Figure 17: Isabelle types for the state and operations of a state-based G-Set.

Like in Figure 7, we parameterize the CRDT on the type of element in the
set, which we denote in Isabelle as ′a. Similar to our offers in the previous
sub-section, we define the operation type to be a type-level synonym for the state
type, which we interpret in the same way (that is, that receiving an “operation”
from some other replica is equivalent to being told to merge our state with the
received one, and replace our current state with the result).

Next, we define a simple insertion operation:

fun insert :: ′a⇒ (′a state)⇒ (′a operation) where
insert a as = { a }

fun gset-op :: (′a operation)⇒ (′a state) ⇀ (′a state) where
gset-op a as = Some (as ∪ a)

Figure 18: Isabelle definition of the insertion operation for a state-based G-Set.

Again, we define an operation insert for demonstration purposes.8 Now
that we have a convenience function for generating states that could be used to
drive state transitions within the system, we can instate the interpretation of
an operation at a state-based G-Set CRDT. This is the second function in the
above Isabelle snippet. Like the state-based G-Counter CRDT, we map a pair of
′a operation and ′a state to a new state of the same type, or None.9

Faithful to the original specification in Figure 7, we interpret the join of two
states (that is, two sets of items, one per replica) as the merge operation.

Because we are using Isabelle’s set library and its built-in function ∪, we
can leverage proofs about built-in Isabelle types, including the fact that ∪ is
commutative, associative, and idempotent. Therefore, unlike our experience in
the previous sub-section when specifying the state-based G-Counter CRDT, we
do not need to prove these facts ourselves.10

8 Again, our proofs reason about state transitions.
9 The existing library in Gomes et al. [2017] requires that this function be a partial mapping, but

we do not specify any behaviors which would cause our node to crash in ordinary execution
here.

10 Recall that in this instance, we were using a user-defined function option-max, and had an
expanded obligation to prove that this function was commutative and associative; Isabelle
inferred idempotence automatically.

5.3 δ-state based crdts 37

Aside from some additional proofs which are standard to all of our instanti-
ations of CRDTs using the library from Gomes et al. [2017], we can immediately
instantiate the strong-eventual-consistency locale without additional proof. We
present the statement of this locale below, and leave it and the additional proofs
about the state-based G-Set to Section A.2.

sublocale sec: strong-eventual-consistency weak-hb hb interp-msg
λops. ∃ xs i. xs prefix of i ∧ node-deliver-messages xs = ops {}

Figure 19: Isabelle instantiation of the strong-eventual-consistency locale for the state-
based G-Set.

5.3 δ-state based crdts

We have reached the climax of this chapter in which we now set out to verify that
δ-state based CRDT equivalents of the G-Counter and G-Set are also inhabitants
of the SEC locale.

This follows simply from construction and our reductions. Recall the senti-
ment of our claim in Maxim 4.2 that all δ-state CRDTs are themselves like the
op-based equivalent of state-based CRDTs, only with additional restriction on
what states are sent to other replicas. All that suffices to show is that restricted
executions of the datatype–that is, ones in which only δ-state fragments are
sent, and not full state–still inhabit the SEC locale.

Recall that, since our proofs reason about state transitions inductively,
we have implicitly covered the case in which only δ-fragments of state are
exchanged between replicas. This is a consequence of our encoding of δ-state
CRDTs as op-based CRDTs, and the fact that all δ-based CRDT messages are
also state-based CRDT messages.

Since we have verified our CRDTs as inhabiting the SEC locale over all
possible operations, we produced proofs for δ-state CRDTs as a side-effect of
our strategy in Maxims 4.1 and 4.2.

We devote the remainder of this section to stating the types of the operation-
producing functions for the δ-based CRDT equivalents of the G-Counter and
G-Set.

5.3.1 δ-state based G-Counter

We begin first with our full definition of the δ-state based G-Counter CRDT.
Like the state-based variant, we treat the state as a partial mapping between a
transparent node identifier type and an optional value, referring to the number
of increment operations performed locally at that node. Following Maxim 4.1,
we treat the operation again as a type-level synonym for the state.

Similar to our treatment of the state-based G-Counter CRDT, we encode the
state as a partial mapping from the set of node identifiers to an integer number

5.3 δ-state based crdts 38

of times that an increment operation was performed at the replica belonging to
that node identifier. Likewise, we treat the operation as a type-level synonym
for this definition of the state.

The only difference (besides renaming gcounter-op to delta-gcounter-op) is
that: the function update does not ever return a value from the underlying state
which does not belong to the replica being updated. That is, we return a state
which is only defined for the single replica being updated.

The full definition of the updated operation function in Isabelle is as follows:

fun inc :: ′id⇒ (′id state)⇒ (′id operation) where
inc who st = (λj. if who = j

then Some (1 + (case (st who) of None⇒ 0 | Some (x)⇒ x))
else None)

Figure 20: Isabelle definition of the δ-state G-Counter CRDT.

Here, we return a δ-state which is only defined for the single replica identifier
being incremented. That is, we only return a value which is not None for the
occurrence when the parameter j is bound to a value which equals who. When
this is met, we increment the value in the state by one, and return the sum.

Since the body of the δ-based G-Counter CRDT is the same, and only the
convenience function changed, all other proofs are the same. In Section 5.4, we
discuss an alternative encoding which limits the kind of messages being sent at
the type-level to be restricted only to δ-fragments.

5.3.2 δ-state based G-Set

Finally, we turn our attention to the remaining CRDT instance: the G-Set.
Similar to our experience verifying the δ-based G-Counter, the specification of
the CRDT itself is identical to the original encoding in Section 5.2.2, following
our intuition in Maxim 4.2.

For completeness, we present the full instantiation of this type (again leaving
the additional proofs to the Appendix in Section A.4):

5.4 alternative encoding of the δ-state reduction 39

type-synonym (′a) state = ′a set
type-synonym (′a) operation = ′a state

fun insert :: ′a⇒ (′a state)⇒ (′a operation) where
insert a as = { a }

fun delta-gset-op :: (′a operation)⇒ (′a state) ⇀ (′a state) where
delta-gset-op a as = Some (as ∪ a)

locale delta-gset = network-with-ops - delta-gset-op {}

Figure 21: Isabelle definition of the δ-state G-Set CRDT.

Notice that our encoding is identical as in the state-based G-Set example,
but the definition of insert has changed. Instead of constructing and sending
the union of the current set and the singleton set containing the item we wish
to add, we construct only the singleton set.

This guides our understanding that if this CRDT only sends messages that
are able to be generated from the modified insert function, that it will achieve
SEC, and indeed we are able to instantiate the strong-eventual-consistency locale
over this type. Because our proofs are inductive over state transitions, we have
implicitly proved the case where only δ-fragments are sent as well.

In the following section, we discuss an alternate encoding which permits a
more direct proof of this fact.

5.4 alternative encoding of the δ-state reduction

In this Section, we discuss an alternative encoding in Isabelle of δ-state CRDTs.
Our key insight following Maxim 4.2 is that in a system where the proofs are
done inductively over state transitions, all executions which only exchange
δ-fragments are implicitly verified. That is, since these messages comprise a
subset of the set of messages which are sent by state-based CRDTs, our inductive
hypothesis still holds, and the result is preserved for δ-state CRDTs.

But the key restriction in Maxim 4.2 is that δ-state CRDTs are ordinarily
allowed to send only fragments of their state, not the entire state.11 For our pur-
poses, we devote the remainder of this section to exploring how this restriction
is encoded at the type level in our proofs in Isabelle.

The approach that we take here is to let the operation type be a type-level
synonym for a sort of refinement type of the state. Consider for a brief example
the G-Set CRDT. Here, the full state is ′a set, but the δ-fragments are singleton
sets. Ordinarily we would make a type-level alias from ′a operation to be the

11 This restriction does not hold for certain anti-entropy algorithms which are implemented on
top of δ-based CRDTs [Almeida et al., 2018]. This left to future work and discussed briefly in
Section 6.2.

5.4 alternative encoding of the δ-state reduction 40

same as ′a state, but this is too permissive. Recall that the operation–for our
purposes–is analogous to the kind of the update message sent between replicas.
We want to encode that this can only be the singleton set, not any arbitrary set.
To do this, we let the operation type be a single element of ′a type, which we
interpret as the singleton set.

In the following sections, we will consider two examples of this restriction.
Note that we are proving the same thing, so the underlying proof statement
is unchanged. That is, in Section 5.3 we were reasoning about an inductive
hypothesis over all possible state transitions. In this section, we are reasoning
about smaller single transitions (e.g., in the case of a G-Set, adding at most one
element in each step), but this is still sufficient to reason about all possible state
transitions.

5.4.1 Refined δ-state based G-Counter

We begin first with the δ-state based G-Counter, and specify it using our
alternate encoding. Recall that in the original specification in Section 5.3.1, we
let the state type be a (partial) mapping from a transparent node identifier type
′a to nat.

Aliasing the operation type to be a type-level synonym for the state allowed
our δ-state CRDT instantiation to send any message, which is too permissive.
Recall that in a δ-state G-Counter, we typically send a single update, e.g., {r1 7→
n} for a single replica r1 incrementing the number of operations performed up
to n. We specify this single-update in Isabelle as follows:

type-synonym (′id) state = ′id⇒ int option
type-synonym (′id) operation = ′id × int

Figure 22: Isabelle definitions for the state and operation types for the restricted δ-based
G-Counter.

Here, we encode the restriction that a δ-state G-Counter can only send an
update about a single replica by encoding that its operation type is a pair of a
transparent node identifier value and the number of increments performed at
that node.

In the following figure, we present the remainder of the altered definitions
to work around this more restricted operation type.

5.4 alternative encoding of the δ-state reduction 41

fun inc :: ′id⇒ (′id state)⇒ (′id operation) where
inc who st = (who, (1 + (case (st who) of None⇒ 0 | Some (x)⇒ x)))

fun op-to-state :: (′id operation)⇒ (′id state) where
op-to-state (who, count) = (λx. if x = who then Some count else None)

fun delta-gcounter-op :: (′id operation)⇒ (′id state) ⇀ (′id state) where
delta-gcounter-op theirs ours = Some (λ x. option-max ((op-to-state theirs) x) (ours x))

Figure 23: Isabelle definitions of the remainder of functions for the restricted δ-state
G-Counter.

In the above, we omit the definition of option-max, which is identical to
Figure 12. First, we reimplement inc to return a value of the correct type by
constructing a pair of the node being incremented, and the value that it is
being incremented to. Now that this is done, we update our implementation
of delta-gcounter-op to match the new type. Again, we return a function which
takes the pairwise maximum between the old and new values corresponding
to a given node. However, we can no longer pass the given operation as input
to this function, since it does not have the same type as the state of our CRDT
in this encoding.

To address this, we convert the operation into a state by constructing a state
which is only defined for the single node being updated, and returns None for
all other values. Once we have this, we can then call it with an arbitrary node
to take its pairwise maximum to generate an updated state.

After specifying the CRDT using this alternate encoding, we did not have to
update any of our existing proofs developed in Section 5.3.1, since Isabelle was
able to infer the remainder of facts it needed to recheck our existing proofs.

5.4.2 Refined δ-state based G-Set

In this section, we apply the same techniques to show that an alternate encoding
of the δ-based G-Set still achieves SEC. As illustrated in 5.4 we replace the
definition of the operation type to only allow for restricted, single-element
messages as follows:

type-synonym (′a) state = ′a set
type-synonym (′a) operation = ′a

Figure 24: Isabelle definitions for the state and operation types for the restricted δ-based
G-Set.

First observe that the underlying type for ′a state is unchanged, but that
the new type for ′a operation only allows a single value to be communicated in
messages between two nodes.

5.5 conclusion 42

Faced with this additional restriction, we update our proofs accordingly.
Following the example in the previous section, we can imagine that our proofs
will need to be updated in two locations:

1. The definition of insert will become simplified, since we will no longer
have to refer to the current state when generating the message signaling
an item has been inserted.

2. The interpretation of the operation will become slightly more complex,
since we will have to treat the incoming item encoded in the operation as a
singleton set, and will thus have to do that conversion.

We include the updated definitions of these two functions in Isabelle below:

fun insert :: ′a⇒ (′a state)⇒ (′a operation) where
insert a - = a

fun delta-gset-op :: (′a operation)⇒ (′a state) ⇀ (′a state) where
delta-gset-op a as = Some (as ∪ { a })

Figure 25: Isabelle definitions of the remainder of functions for the restricted δ-state
G-Set.

Notice that our insertion operation became dramatically simpler. In fact,
the function is so simple, that it is the identity on its first parameter. We could
have dropped the second parameter from the function entirely,12 but we leave
it there to illustrate the fact that it can be ignored.

This simplification is balanced with a small amount of complexity added
in the delta-gset-op function, which now constructs a singleton set from the
incoming operation–referred to as a–into { a }.

As before, Isabelle is able to infer the remaining set of facts given our
definitions above in order to check the unmodified proofs from the original
encoding.

5.5 conclusion

In this Chapter, we motivated our rationale behind relaxing the network model
on top of which we verify our CRDTs. We described our proof strategy for
relaxing the network model, and presented two example CRDTs which we
verified on top of this network model. We began each example by showing the
state-based object, and a proof that each CRDT inhabits the SEC locale, even on
the relaxed network model.

We then reasoned that our state-based example CRDTs in fact establish the
same goal for δ-state CRDTs without additional modification, according to our

12 Making its type signature ′a⇒ (′a operation).

5.5 conclusion 43

result in Maxim 4.2. Finally, we presented an alternate encoding which restricts
the set of messages nodes are allowed to send together, which more closely
approximates the set of messages that δ-CRDTs are allowed to send, and again
proved that this encoding is an inhabitant of SEC.

6
F U T U R E W O R K

This chapter outlines potential future research directions based on interesting
and under-explored areas in this work. Here, we will outline three directions in
the area of verifying δ-state CRDTs, as well as some insight that might be gained
by exploring each of these directions. It is our hope that future researchers in
this area may choose to conduct further investigation into these areas.

6.1 verifying additional δ-state crdts

In our work, we presented examples of two δ-state CRDTs: the δ G-Counter,
and the δ G-Set. An immediate future direction is to investigate and verify
more instances of δ-state CRDTs.

One area of particular interest is in the composition of multiple δ-state CRDTs.
We have begun investigating the instantiation of a pair locale, which takes as
arguments two independent δ-state CRDTs, known as “left” and “right.” Our
hope is that provided existing instantiations of both of the sub-CRDTs, that a
pair locale given two already-verified CRDTs could be used without additional
proof burden to create another instance of the network-with-ops locale. That is:
can two already-verified δ-state CRDTs be used to compose a new δ-state CRDT
which is their product without additional proof burden?

If this were possible, two new CRDTs would be verified without effort: the
PN-Counter and the 2P-Set. These two CRDTs are the most straightforward
composition of other known CRDTs. Namely, the PN-Counter supports both an
inc and dec operation by maintaining two counters (each of which is treated as a
single G-Counter, so the overall state is still monotone and thus forms a join
semi-lattice).

The PN-Counter has two δ-state based G-Counter, which we refer to as (fsts)
and (snds), where s ∈ S refers to the state of the PN-Counter. One possible
specification for a δ-based PN-Counter follows:

44

6.2 direct δ-state crdt proofs 45

PN-Counterδ =



S : N
|I|
0 ×N

|I|
+

s0 : [0, 0, · · · , 0]× [0, 0, · · · , 0]

qδ : λs. ∑
i∈I

(fst s)(i)−∑
i∈I

(snd s)(i)

uδ : λs, (i, op).

{
{i 7→ 1} ×∅ if op = +

∅× {i 7→ 1} if op = −

mδ : λs1, s2.
{max{i1, i2} : i ∈ dom((fst s1) ∪ (fst s1))}
× {max{i1, i2} : i ∈ dom((snd s1) ∪ (snd s1))}

Figure 26: δ-state based PN-Counter CRDT

Minor additional consideration is given to the updating function, uδ, which
returns an empty-set on the counter not being updated. Finally, the merging
function mδ merges the left- and right-hand sides of the counter separately, and
returns a pair. The 2P-Set is similar in function to the above, substituting a
δ-state based G-Set in place of the G-Counter.

If such a pair locale exists, we believe it would be as straightforward as
instantiating this locale over two copies of the G-Counter and G-Set to obtain
the PN-Counter and 2P-Set immediately.

6.2 direct δ-state crdt proofs

To explore this idea, we drew significant inspiration from the work of Almedia
and his co-authors in Almeida et al. [2018] to restate δ-state CRDTs in terms of
op-based CRDTs in an effort to reuse as much of their library as possible.

A significant drawback of this approach is that we are bound to the same
restrictions as op-based CRDTs, which are inherently more restricted than state-
based CRDTs. Much of this restriction comes from the eventual delivery property
of EC, which states that [Shapiro et al., 2011]:

∀i, j. f ∈ ci ⇒ ♦ f ∈ cj

or that for any pair of correct replicas i, j with histories ci and cj, respectively,
an update received at one of those replicas is eventually received at all other
replicas.

Of course, under relaxed delivery semantics (i.e., in the case that the network
may delay messages for an infinite amount of time), op-based CRDTs do not
achieve this property [Shapiro et al., 2011]. Namely, if an operation is performed
at some replica, and that message is dropped while in transit to another replica,
that replica will never receive the message.

State-based CRDTs do not suffer from this problem, since every update they
send encapsulates the history of all previous updates, since each update is

6.2 direct δ-state crdt proofs 46

either reflected in the state, or subsumed by some later update which is itself
reflected in the state [Shapiro et al., 2011]. Since the entirety of the state is
shared with each replica during an update, state-based CRDTs do not need to
impose an additional delivery relation in order to prove that they achieve SEC.

op-based CRDTs, on the other hand, do need to specify an additional delivery
relation on top of their definition. That is, the delivery relation P is a predicate
over network behaviors in which the eventual delivery property can hold. In
other words, for op-based CRDTs:

P⇒ ∀i, j. f ∈ ci ⇒ ♦ f ∈ cj

where it is a standard assumption that P preserves (1) message order up to
concurrent messages and (2) at least once delivery [Almeida et al., 2018, Shapiro
et al., 2011].1

However, specifying δ-based CRDTs as a refinement of state-based CRDTs

directly would not be sufficient for a constructive proof that δ-state based CRDTs

achieve SEC. This is due to the fact that δ-state CRDTs send state fragments,
which makes them the state-based analogue of op-based CRDTs. Without an
additional delivery relation, δ-state CRDT replicas which do not receive some
update will never catch up without additional updates.

Consider the figure below. In this example, we have three δ-state CRDT

replicas of a δ-based GCounter, and an inc is performed at r1. Immediately, r1
generates the state fragment {r1 7→ 1}, and sends it to the other replicas, r2 and
r3. For the sake of example, say that the network drops the update in route to
r3 such that it is never received by r3:

r1 : [1, 0, 0]

r2 : [1, 0, 0]

r3 : [0, 0, 0]

jo
in

{r1
7→1}

join
{r

1 7→
1}

join

Figure 27: δ-state CRDTs violating SEC without the causal merging condition.

1 In practice, vector timestamps or globally unique identifiers are associated with each message
at the network layer, and messages are reordered upon delivery to ensure that messages
are delivered in the correct order. Since all messages are eventually delivered under the
precondition P, this is a standard assumption.

6.3 causally consistent δ-crdts 47

Without any future updates, neither of the replicas that have received the
update will ever have reason to update r3 again. This is a demonstration of a
SEC violation, since:

{r1 7→ 1} ∈ ri ; ♦{r1 7→ 1} ∈ r3, i ∈ {1, 2}

That is, though the update {r1 7→ 1} is in the node histories of r1 and r2 (both
of which are behaving correctly), that update is never in the history of node r3,
which is also behaving correctly.

A critical issue in the above example is that r2 merges the update from r1
immediately–thus placing the update in that node’s history–without knowing
whether or not it has been received by r3. An anti-entropy algorithm like
in Almeida et al. [2018] addresses these problems. The goal of an anti-entropy
algorithm for δ-state CRDTs is to do the following:

1. On an operation, generate the δ-mutation, and apply it to both the local
state, and a temporary δ-group.

2. Periodically, randomly choose between the current state and current δ-
group, and send its entire contents to all other replicas, and flush the
δ-group.

This ensures that–even without outside interaction–the system as in Figure 27

will eventually recover. This follows since either one of r1 or r2 will at some
point send their full state to all other replicas, including r3, at which point r3
will have caught up.

We believe that it would be a worthwhile research goal to encode this anti-
entropy algorithm into a proof assistant, and specify that δ-state CRDTs achieve
SEC without a correspondence to traditional op-based CRDTs. Similarly to our
work, in which we found a correspondence between δ- and op-based CRDTs,
we believe that specifying δ-state CRDTs on their own would highlight the ways
in which δ-state CRDTs are different from op-based CRDTs.

Likewise, specifying the goal in this fashion would allow the proof to reason
about more network behaviors without a delivery predicate P, since the proof
would be aided by the periodic behavior of the anti-entropy algorithm above.

6.3 causally consistent δ-crdts

Another difference between op- and state-based CRDTs is that state-based
CRDTs require a causal merging condition in order to ensure causal consistency
(that is, that updates are applied in a fashion that preserves their causality),
whereas in op-based CRDTs this is traditionally an assumption placed on
P [Shapiro et al., 2011].

The authors of Almeida et al. [2018] define a δ-interval ∆a,b
i as:

∆a,b
i =

⊔{
dk

i : k ∈ [a, b)
}

6.3 causally consistent δ-crdts 48

that is, ∆a,b
i contains the deltas that occurred at replica i beginning at time a and

up until time b. They go on to use this δ-interval to define the causal merging
condition, which is that replica i only joins a δ-interval ∆a,b

j into its own state Xi

if:
Xi w Xa

j

That is, updates are only applied locally if they occurred before the latest-known
update at replica i.

Algorithms which uphold the causal merging condition on δ-intervals have
been proven on paper to satisfy Causal Consistency (CC) in addition to SEC.
To our knowledge, this result has not been mechanized, and so we believe
it would be a worthwhile direction of future research to specify the causal
merging condition and associated anti-entropy algorithms which preserve it
into an interactive theorem prover and mechanize the results of Almeida et al.
[2018].

If the above is the subject of further exploration, we believe that it would be
additionally possible to prove that δ-state CRDTs achieve SEC by a simulation
proof that establishes their correspondence with state-based CRDTs. This is
mentioned as Proposition 3 in Almeida et al. [2018], but we believe that this is
another fruitful area for formal verification.

7
C O N C L U S I O N

In this thesis, we extended the work in Gomes et al. [2017] to provide a
mechanized proofs that δ-CRDTs [Almeida et al., 2018] achieve SEC [Shapiro
et al., 2011].

Our central intuition (cf., Sections 4.1 and 4.2) was to treat δ- and state-based
CRDTs as refinements of op-based CRDTs. This allowed us to successfully verify
that two CRDTs–the G-Counter, and G-Set–achieve SEC when specified both in
the state- and δ-state based style.

In addition, we relaxed the network model by removing an assumption that
all messages are unique. While our main result is still predicated on a set of
nice delivery semantics P, this allowed us to quantify over an expanded set of
all possible network executions.

Together, this allowed us to restate the main result of Almeida et al. [2018]
in a mechanized fashion. We believe that δ-state CRDTs satisfy an appealing
“best-of-both-worlds” property. δ-state CRDTs require relatively little of the
network (like op-based CRDTs), yet still maintain a relatively small payload
size (like state-based CRDTs). This places great interest on formal verification
of their convergence properties.

In the future, we hope to see our result extended by specifying δ-state CRDTs

in terms of their state-based counterparts, as well as mechanizing well-known
anti-entropy algorithms and causality constraints on applying updates from
other replicas [Almeida et al., 2018]. We believe that this would be sufficient to
remove the precondition on a set of delivery semantics P from our result.

49

A
A D D I T I O N A L P R O O F S

In this appendix, we provide the full proof scripts used in this work. The source
is available for free at: https://github.com/ttaylorr/thesis.

a.1 state-based g-counter crdt

locale gcounter = network-with-ops - gcounter-op λ x. None

lemma (in gcounter) option-max-assoc:
option-max a (option-max b c) = option-max (option-max a b) c
apply (induction a; induction b; induction c)
apply (auto)
done

lemma (in gcounter) option-max-commut: option-max a b = option-max b a
apply (induction a; induction b)
apply (auto)
done

lemma (in gcounter) [simp] : gcounter-op x B gcounter-op y = gcounter-op y B gcounter-op
x

apply (auto simp add: kleisli-def option-max-assoc)
apply (simp add: option-max-commut)
done

lemma (in gcounter) concurrent-operations-commute:
assumes xs prefix of i
shows hb.concurrent-ops-commute (node-deliver-messages xs)
using assms
apply(clarsimp simp: hb.concurrent-ops-commute-def)
apply(unfold interp-msg-def , simp)
done

corollary (in gcounter) counter-convergence:
assumes set (node-deliver-messages xs) = set (node-deliver-messages ys)

and xs prefix of i
and ys prefix of j

shows apply-operations xs = apply-operations ys
using assms by(auto simp add: apply-operations-def

intro: hb.convergence-ext concurrent-operations-commute

50

https://github.com/ttaylorr/thesis

A.2 state-based g-set crdt 51

node-deliver-messages-distinct hb-consistent-prefix)

context gcounter begin

sublocale sec: strong-eventual-consistency weak-hb hb interp-msg
λops. ∃ xs i. xs prefix of i ∧ node-deliver-messages xs = ops λ x. None
apply(standard; clarsimp)

apply(auto simp add: hb-consistent-prefix drop-last-message node-deliver-messages-distinct
concurrent-operations-commute)

apply(metis (full-types) interp-msg-def gcounter-op.elims)
using drop-last-message apply blast
done

end

end

a.2 state-based g-set crdt

locale gset = network-with-ops - gset-op {}

lemma (in gset) [simp] : gset-op x B gset-op y = gset-op y B gset-op x
apply (auto simp add: kleisli-def)

done

lemma (in gset) concurrent-operations-commute:
assumes xs prefix of i
shows hb.concurrent-ops-commute (node-deliver-messages xs)
using assms
apply(clarsimp simp: hb.concurrent-ops-commute-def)
apply(unfold interp-msg-def , simp)

done

corollary (in gset) set-convergence:
assumes set (node-deliver-messages xs) = set (node-deliver-messages ys)

and xs prefix of i
and ys prefix of j

shows apply-operations xs = apply-operations ys
using assms by(auto simp add: apply-operations-def intro: hb.convergence-ext concurrent-operations-commute

node-deliver-messages-distinct hb-consistent-prefix)

context gset begin

sublocale sec: strong-eventual-consistency weak-hb hb interp-msg
λops. ∃ xs i. xs prefix of i ∧ node-deliver-messages xs = ops {}
apply(standard; clarsimp)

A.3 δ-state g-counter crdt 52

apply(auto simp add: hb-consistent-prefix drop-last-message node-deliver-messages-distinct
concurrent-operations-commute)

apply(metis (full-types) interp-msg-def gset-op.elims)
using drop-last-message apply blast
done

end

end

a.3 δ-state g-counter crdt

locale delta-gcounter = network-with-ops - delta-gcounter-op λ x. None

lemma (in delta-gcounter) option-max-assoc:
option-max a (option-max b c) = option-max (option-max a b) c
apply (induction a; induction b; induction c)
apply (auto)
done

lemma (in delta-gcounter) option-max-commut: option-max a b = option-max b a
apply (induction a; induction b)
apply (auto)
done

lemma (in delta-gcounter) [simp] : delta-gcounter-op xB delta-gcounter-op y = delta-gcounter-op
y B delta-gcounter-op x

apply (auto simp add: kleisli-def option-max-assoc)
apply (simp add: option-max-commut)
done

lemma (in delta-gcounter) concurrent-operations-commute:
assumes xs prefix of i
shows hb.concurrent-ops-commute (node-deliver-messages xs)
using assms
apply(clarsimp simp: hb.concurrent-ops-commute-def)
apply(unfold interp-msg-def , simp)
done

corollary (in delta-gcounter) counter-convergence:
assumes set (node-deliver-messages xs) = set (node-deliver-messages ys)

and xs prefix of i
and ys prefix of j

shows apply-operations xs = apply-operations ys
using assms by(auto simp add: apply-operations-def intro: hb.convergence-ext concurrent-operations-commute

node-deliver-messages-distinct hb-consistent-prefix)

A.4 δ-state g-set crdt 53

context delta-gcounter begin

sublocale sec: strong-eventual-consistency weak-hb hb interp-msg
λops. ∃ xs i. xs prefix of i ∧ node-deliver-messages xs = ops λ x. None
apply(standard; clarsimp)

apply(auto simp add: hb-consistent-prefix drop-last-message node-deliver-messages-distinct
concurrent-operations-commute)

apply(metis (full-types) interp-msg-def delta-gcounter-op.elims)
using drop-last-message apply blast
done

end

end

a.4 δ-state g-set crdt

locale delta-gset = network-with-ops - delta-gset-op {}

lemma (in delta-gset) [simp] : delta-gset-op xB delta-gset-op y = delta-gset-op yB delta-gset-op
x

apply (auto simp add: kleisli-def)
done

lemma (in delta-gset) concurrent-operations-commute:
assumes xs prefix of i
shows hb.concurrent-ops-commute (node-deliver-messages xs)
using assms
apply(clarsimp simp: hb.concurrent-ops-commute-def)
apply(unfold interp-msg-def , simp)

done

corollary (in delta-gset) set-convergence:
assumes set (node-deliver-messages xs) = set (node-deliver-messages ys)

and xs prefix of i
and ys prefix of j

shows apply-operations xs = apply-operations ys
using assms by(auto simp add: apply-operations-def intro: hb.convergence-ext concurrent-operations-commute

node-deliver-messages-distinct hb-consistent-prefix)

context delta-gset begin

sublocale sec: strong-eventual-consistency weak-hb hb interp-msg
λops. ∃ xs i. xs prefix of i ∧ node-deliver-messages xs = ops {}
apply(standard; clarsimp)

apply(auto simp add: hb-consistent-prefix drop-last-message node-deliver-messages-distinct
concurrent-operations-commute)

A.5 restricted δ-state g-counter crdt 54

apply(metis (full-types) interp-msg-def delta-gset-op.elims)
using drop-last-message apply blast
done

end

end

a.5 restricted δ-state g-counter crdt

locale delta-gcounter = network-with-ops - delta-gcounter-op λ x. None

lemma (in delta-gcounter) option-max-assoc:
option-max a (option-max b c) = option-max (option-max a b) c
apply (induction a; induction b; induction c)
apply (auto)
done

lemma (in delta-gcounter) option-max-commut: option-max a b = option-max b a
apply (induction a; induction b)
apply (auto)
done

lemma (in delta-gcounter) [simp] : delta-gcounter-op xB delta-gcounter-op y = delta-gcounter-op
y B delta-gcounter-op x

apply (auto simp add: kleisli-def option-max-assoc)
apply (simp add: option-max-commut)
done

lemma (in delta-gcounter) concurrent-operations-commute:
assumes xs prefix of i
shows hb.concurrent-ops-commute (node-deliver-messages xs)
using assms
apply(clarsimp simp: hb.concurrent-ops-commute-def)
apply(unfold interp-msg-def , simp)
done

corollary (in delta-gcounter) counter-convergence:
assumes set (node-deliver-messages xs) = set (node-deliver-messages ys)

and xs prefix of i
and ys prefix of j

shows apply-operations xs = apply-operations ys
using assms by(auto simp add: apply-operations-def intro: hb.convergence-ext concurrent-operations-commute

node-deliver-messages-distinct hb-consistent-prefix)

context delta-gcounter begin

A.6 restricted δ-state g-set crdt 55

sublocale sec: strong-eventual-consistency weak-hb hb interp-msg
λops. ∃ xs i. xs prefix of i ∧ node-deliver-messages xs = ops λ x. None
apply(standard; clarsimp)

apply(auto simp add: hb-consistent-prefix drop-last-message node-deliver-messages-distinct
concurrent-operations-commute)

apply(metis (full-types) interp-msg-def delta-gcounter-op.elims)
using drop-last-message apply blast
done

end

end

a.6 restricted δ-state g-set crdt

locale delta-gset = network-with-ops - delta-gset-op {}

lemma (in delta-gset) [simp] : delta-gset-op xB delta-gset-op y = delta-gset-op yB delta-gset-op
x

apply (auto simp add: kleisli-def)
done

lemma (in delta-gset) concurrent-operations-commute:
assumes xs prefix of i
shows hb.concurrent-ops-commute (node-deliver-messages xs)
using assms
apply(clarsimp simp: hb.concurrent-ops-commute-def)
apply(unfold interp-msg-def , simp)

done

corollary (in delta-gset) set-convergence:
assumes set (node-deliver-messages xs) = set (node-deliver-messages ys)

and xs prefix of i
and ys prefix of j

shows apply-operations xs = apply-operations ys
using assms by(auto simp add: apply-operations-def intro: hb.convergence-ext concurrent-operations-commute

node-deliver-messages-distinct hb-consistent-prefix)

context delta-gset begin

sublocale sec: strong-eventual-consistency weak-hb hb interp-msg
λops. ∃ xs i. xs prefix of i ∧ node-deliver-messages xs = ops {}
apply(standard; clarsimp)

apply(auto simp add: hb-consistent-prefix drop-last-message node-deliver-messages-distinct
concurrent-operations-commute)

apply(metis (full-types) interp-msg-def delta-gset-op.elims)
using drop-last-message apply blast

A.6 restricted δ-state g-set crdt 56

done
end

end

B I B L I O G R A P H Y

P. S. Almeida, A. Shoker, and C. Baquero. Delta state replicated data types.
Journal of Parallel and Distributed Computing, 111:162–173, Jan 2018. ISSN
0743-7315. doi: 10.1016/j.jpdc.2017.08.003. URL http://dx.doi.org/10.1016/j.

jpdc.2017.08.003.

Apple, Inc. ios runtime headers. https://github.com/nst/iOS-Runtime-Headers,
2018.

C. Baquero, P. S. Almeida, and A. Shoker. Making Operation-Based CRDTs
Operation-Based. In D. Hutchison, T. Kanade, B. Steffen, D. Terzopoulos,
D. Tygar, G. Weikum, K. Magoutis, P. Pietzuch, J. Kittler, J. M. Kleinberg,
A. Kobsa, F. Mattern, J. C. Mitchell, M. Naor, O. Nierstrasz, and C. P. Rangan,
editors, 4th International Conference on Distributed Applications and Interoperable
Systems (DAIS), volume LNCS-8460 of Distributed Applications and Interoperable
Systems, pages 126–140, Berlin, Germany, June 2014. Springer. doi: 10.1007/
978-3-662-43352-2\ 11. URL https://hal.inria.fr/hal-01287738.

G. Cabrita and N. Preguiça. Non-uniform replication, 2017.

C. Cachin, R. Guerraoui, and L. Rodrigues. Introduction to Reliable and Secure
Distributed Programming. Springer Publishing Company, Incorporated, 2nd
edition, 2011. ISBN 3642152597.

V. Enes, P. S. Almeida, C. Baquero, and J. Leitão. Efficient synchronization of
state-based crdts, 2018.

V. B. F. Gomes, M. Kleppmann, D. P. Mulligan, and A. R. Beresford. Verifying
strong eventual consistency in distributed systems. CoRR, abs/1707.01747,
2017. URL http://arxiv.org/abs/1707.01747.

H. Howard. Distributed consensus revised. Technical Report UCAM-CL-
TR-935, University of Cambridge, Computer Laboratory, Apr. 2019. URL
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-935.pdf.

H. Howard and R. Mortier. Paxos vs raft. Proceedings of the 7thWorkshop
on Principles and Practice of Consistency for Distributed Data, Apr 2020. doi:
10.1145/3380787.3393681. URL http://dx.doi.org/10.1145/3380787.3393681.

L. Lamport. Time, clocks, and the ordering of events in a distributed system.
Commun. ACM, 21(7):558–565, July 1978. ISSN 0001-0782. doi: 10.1145/359545.
359563. URL https://doi.org/10.1145/359545.359563.

57

http://dx.doi.org/10.1016/j.jpdc.2017.08.003
http://dx.doi.org/10.1016/j.jpdc.2017.08.003
https://github.com/nst/iOS-Runtime-Headers
https://hal.inria.fr/hal-01287738
http://arxiv.org/abs/1707.01747
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-935.pdf
http://dx.doi.org/10.1145/3380787.3393681
https://doi.org/10.1145/359545.359563

BIBLIOGRAPHY 58

L. Lamport. The part-time parliament. ACM Trans. Comput. Syst., 16(2):133–169,
May 1998. ISSN 0734-2071. doi: 10.1145/279227.279229. URL https://doi.org/

10.1145/279227.279229.

T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL — A Proof Assistant for
Higher-Order Logic, volume 2283 of LNCS. Springer, 2002.

D. Ongaro and J. Ousterhout. In search of an understandable consen-
sus algorithm. In 2014 USENIX Annual Technical Conference (USENIX
ATC 14), pages 305–319, Philadelphia, PA, June 2014. USENIX Associa-
tion. ISBN 978-1-931971-10-2. URL https://www.usenix.org/conference/atc14/

technical-sessions/presentation/ongaro.

Redis, Inc. Under the hood: Redis crdts. https://redislabs.com/docs/

under-the-hood/, 2020.

M. Shapiro, N. Preguiça, C. Baquero, and M. Zawirski. Conflict-free Replicated
Data Types. Research Report RR-7687, July 2011. URL https://hal.inria.fr/

inria-00609399.

A. van der Linde, J. a. Leitão, and N. Preguiça. δ-crdts: Making δ-crdts
delta-based. In Proceedings of the 2nd Workshop on the Principles and Practice
of Consistency for Distributed Data, PaPoC ’16, New York, NY, USA, 2016.
Association for Computing Machinery. ISBN 9781450342964. doi: 10.1145/
2911151.2911163. URL https://doi.org/10.1145/2911151.2911163.

J. R. Wilcox, D. Woos, P. Panchekha, Z. Tatlock, X. Wang, M. D. Ernst, and
T. Anderson. Verdi: A framework for implementing and formally verifying
distributed systems. In PLDI 2015: Proceedings of the ACM SIGPLAN 2015
Conference on Programming Language Design and Implementation, pages 357–368,
Portland, OR, USA, June 2015.

D. Woos, J. R. Wilcox, S. Anton, Z. Tatlock, M. D. Ernst, and T. Anderson.
Planning for change in a formal verification of the raft consensus protocol.
In Proceedings of the 5th ACM SIGPLAN Conference on Certified Programs and
Proofs, CPP 2016, page 154–165, New York, NY, USA, 2016. Association for
Computing Machinery. ISBN 9781450341271. doi: 10.1145/2854065.2854081.
URL https://doi.org/10.1145/2854065.2854081.

https://doi.org/10.1145/279227.279229
https://doi.org/10.1145/279227.279229
https://www.usenix.org/conference/atc14/technical-sessions/presentation/ongaro
https://www.usenix.org/conference/atc14/technical-sessions/presentation/ongaro
https://redislabs.com/docs/under-the-hood/
https://redislabs.com/docs/under-the-hood/
https://hal.inria.fr/inria-00609399
https://hal.inria.fr/inria-00609399
https://doi.org/10.1145/2911151.2911163
https://doi.org/10.1145/2854065.2854081

	Introduction
	Preliminaries
	op- and state-based trade-offs
	Contributions

	Background
	Motivation
	Coordinated Replication
	Distributed Consensus Algorithms
	Consistency Guarantees
	Eventual Consistency
	Strong Eventual Consistency

	state-based CRDTs
	Merging states

	op-based CRDTs
	-state CRDTs

	Elementary CRDT instantiations
	Example: Grow-Only Counter
	State-based G-Counter
	op-based G-Counter
	-state based G-Counter

	Example: G-Set
	State-based G-Set
	op-based G-Set
	-state based G-Set

	CRDT reductions
	state-based CRDTs as op-based
	Mapping states under
	Mapping updates under

	-state based CRDTs as op-based

	Example CRDTs under Relaxed Network Model
	Network Relaxations
	Delivery Semantics

	State-based CRDTs
	State-based G-Counter
	State-based G-Set

	-state based CRDTs
	-state based G-Counter
	-state based G-Set

	Alternative encoding of the -state reduction
	Refined -state based G-Counter
	Refined -state based G-Set

	Conclusion

	Future Work
	Verifying additional -state CRDTs
	Direct -state CRDT proofs
	Causally Consistent -CRDTs

	Conclusion
	Additional Proofs
	state-based G-Counter CRDT
	state-based G-Set CRDT
	-state G-Counter CRDT
	-state G-Set CRDT
	Restricted -state G-Counter CRDT
	Restricted -state G-Set CRDT

	Bibliography

