
CSE 341 Midterm – Taylor Blau Slow down, double check. . .

1 Primitives

int An integer. Ex. 1, 2, etc.

real A real number. Ex. 1.0, Math.pi, etc.

string A string of characters. Ex. "CSE 341".

char A single character. Ex. #"C".

’a list An list of other things that share the
same type.

’a option Either SOME ’a or NONE.

unit The unit singleton: ().

2 Expressions

val-binding Introduces a binding: val x = 5;.

fun-binding Introduces a function binding (see:
below).

let-expression Composes val and fun bindings.

if-expression Executes e1, then e2, otherwise
e3.

case-expression Branches on a “one-of” type
(see: below).

3 Datatypes, records

Record values are values that have field names
and values:

(* {f1: T1 , ..., fn: TN} *)
val _ = {f1 = v1, ..., fn = vn}
val _ = (#f1 e1)

Datatype bindings have a type and one (or more)
constructors:

datatype exp = Constant of int
| Addition of exp * exp
(* ... *)

and can be pattern-matched recursively:

fun eval exp =
case exp of

Constant i => i
| Addition (e1 , e2) = (eval e1) +

(eval e2)
| _ = (* ... *)

The type keyword defines instead a type synonym,
not a new type:

type cartesian = int * int

Since type introduces no new constructor bind-
ings, this type may be used interchangeably with
any place that expects or receives an int * int.

An equality type (denoted ’’a) means it is an un-
constrained type α which defines equality against
other α’s.

3.1 Tail-recursion

Given a function defined as

fun factorial n =
if n = 0 then 1
else

n * (factorial (n - 1))

Will take exponential stack space to compute, and
instead can be tail-call optimized as:

fun factorial n =
let fun aux (n, acc) =

if n = 0
then acc
else aux(n-1, n*acc)

in aux(n, 1)
end

A function call is in the tail-position (and there-
fore, will be tail-call optimized) if:

1. If an expression is not in the tail position, then
none of its sub-expressions are either.

2. f is the last function call in the enclosing ex-
pression.

3. If an if-expression is in the tail position, then
both of its subexpressions are.

4 Exceptions
The exception binding creates a new exception
type:

exception E1
exception E2 of int * int

The raise function raises an exception:

raise E1
raise (E2 (1, 2))

The handle expression rescues an exception:

(* ... *) handle E1 => (* ... *)

or fails to catch an exception, and the propaga-
tion continues up to and including termination of
the program.

5 First-class Functions
Functions are values, and can be used in any other
place that values can be used. Functions may be
accepted as arguments, provided as return values,
or etc.
Anonymous functions are defined as:

(fn (x) => ...)

5.1 Lexical scope

When a function is defined, it is evaluated to a
closure. The closure composes the function defi-
nition, and the environment in which the function
is evaluated. This environment is exactly the en-
vironment in which the function was defined ex-
tended with a reference to the function itself (if
non-anonymous).

1. A function body is not evaluated until the
function is called.

2. A function body is evaluated every time a func-
tion is called.

3. A variable binding evaluates its expression
when the binding is evaluated, not every time
it is used.

5.2 Composition

Functions can be composed using the o function:

val fn_1 = fn : ’a -> ’b
val fn_2 = fn : ’b -> ’c
val fn_3 = fn_2 o fn_1 (* ’a -> ’c *)

5.3 Currying

Functions can be tupled:

(* fn : int * int * int -> int *)
fun x (a, b, c) = a + b + c

or curried:

(* fn : int -> int -> int -> int *)
fun x a b c = a + b + c

6 References
1. The ref function creates a new reference to its

argument.

2. The ! function “de-references” the value inside
the reference.

3. The := function replaces the value inside the
reference, and returns ().

7 Modules
Modules contain a list of bindings, and are names-
paced under their top-level module name, in this
case M.

structure M = struct bindings [...] end

Signatures can contain a list of expected bindings,
and are satisfied by modules explicitly:

signature S = sig
type t_abstract
type t_concrete = int * int
val my_fun : int -> int
val my_val : int

end

structure M :> S = struct ... end

A signature S is matched by module M if the fol-
lowing hold:

1. Every non-abstract type in S is provided in M

as given.

2. Every abstract type in S is provided in M in
some way.

3. Every val-binding in S is provided in M, possi-
bly with a more general or less abstract type.

4. Every exn-binding in S is provided in M.

5. Any additional bindings in M not specified in S

are OK.

8 Mutual Recursion
To have two functions call one another, use the
and keyword in a fun-binding:

fun expect_1 xs =
case xs of

1::xs ’ => expect_0 xs’
| _ => false

and expect_0 xs =
(* ... *)

9 Type Inference
To determine the type of a function, assume the
following steps:

1. Determine the types of a binding-set in order.

2. Analyze all necessary facts.

3. Use type variables for unconstrained types.

4. Enforce value restriction.

10 Equivalence
Two functions are equivalent if they:

1. Produce equivalent results given equivalent in-
puts.

2. Exhibit the same (non-)termination behavior.

3. Mutate non-local memory similarly.

4. Perform the same input and output.

5. Raise the same exceptions.

There are a set of four standard equivalences:

1. Consistently rename bound variables and uses.

2. Use a helper function, or do not.

3. Perform unnecessary function wrapping, or do
not.

4. ML let-bindings are syntatic sugar for func-
tion calls:

let val x = e1
in e2 end

(fn x => e2) e1

11 Standard library
11.1 List

@ : ’a list * ’a list -> ’a list

map : (’a -> ’b) -> ’a list -> ’b list

filter : (’a -> bool) -> ’a list -> ’a list

foldl : (’a * ’b -> ’b) -> ’b -> ’a list ->

’b

11.2 String

implode : char list -> string

explode : string -> char list

sub : string * int -> char

size : string -> int

12 Gotcha’s
1. int vs. real usage.

2. Unnecessary function wrapping.

3. Currying vs. tupling.

4. Datatype bindings introduce constructors.


