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Chapter 1

Introduction

1.1 Introduction

Many equations involve quantities or functions that pertain to the rate at which processes
occur. Such equations are called differential equations.

1.1.1 Classifications

There are two important classifications of differential equations:

Ordinary Differential Equations Equations involving a derivative of one or more func-
tions, but only with respect to a single independent variable (as opposed to a partial
derivative, that can be taken with respect to multiple independent variables).

Partial Differential Equation Equations that involve partial derivatives, or derivatives
that can be taken with respect to multiple independent variables.

1.1.2 Order

Define the order of a differential equation to be the maximum order of each differential
component of the equation.

1.1.3 Linearity

Define a linear differential equation F to be one who is a linear function in y of all of its
various y(n) derivatives. Define a non-linear differential equation to be one that is not.

In other terms, a linear differential equation can be written as:

n∑
i=0

ai(x) · y(n−i)

Where each ai is a function of x (linear or not), but does not involve y. Note that y(n−i)

denotes the n− i-th derivative of y.

4



CHAPTER 1. INTRODUCTION 5

1.1.4 Separability

Define a separable differential equation to be one for which there exists a function f(t), such
that:

dy

dt
= f(t) · g(y)

When this is linear, this is called a separable, first-order linear differential equation. To
solve equations of this form, apply the following process:

1. Begin by rewriting as:
1

g(y)
dy = f(t)dt

2. Then, integrate both sides as: ∫
1

g(y)
dy =

∫
f(t)dt

3. And, if possible, solve for y. If y is not easily found, then leave it as a “nice” implicit
solution.

Example

Here is an example differential equation, that we wish to solve for y.

dy

dx
= 3x2y2

Begin by separating like terms and their differentials:

1

3x2
dy = 3x2 dx

Then, integrate both sides: ∫
y−2 dy =

∫
3x2 dx

−y−1 = 3 ·
∫
x2 dx

=
�
�
�3

3
x3 + C1

= x3 + C1

Finally simplifying to:

y =
1

x3 + C2



Chapter 2

First Order Differential Equations

2.1 Initial Value Problem

Consider a differential equation of the form:

dy

dt
= ay − b

Where both a and b are constants. Consider that we are also privy to the fact that
y(0) = y0. This problem, and problems like it are called “Initial Value Problem(s)”, or
I.V.P., for short.

To solve an I.V.P., we first prove the general solution, and then state it. We begin as
follows:

dy

dt
= ay − b

= a(y − b

a
)

We then separate the variables so that the equation is integrable:∫
dy

y − b
a

=

∫
a dt

Simplifying both sides, we obtain:

ln

∣∣∣∣y − b

a

∣∣∣∣ = at+ C1

We exponentiate both sides (letting A = eC1):∣∣∣∣y − b

a

∣∣∣∣ = Aeat

Going further, we obtain:

y − b

a
= ±Aeat

6
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Finally:

y = Aeat +
b

a

We can then solve the initial value constraint (y(0) = y0) by:

y0 = Aea·0 +
b

a

To obtain:

y(t) =

(
y0 −

b

a

)
eat +

b

a
.

2.2 Euler’s Method

Euler’s method gives us an approximation for a function f based on a step function, and its
derivative, d

dt
f . We use the derivative of the function in order to provide an approximation

by considering small changes in t along tangent lines to approximate the integral curve.

yn+1 = yn +
d

dt
y

∣∣∣∣ t=tn
y=yn

· (tn+1 − tn)

2.3 Linear Equations

We describe a method of solving linear equations known as “Integrating Factors”. Recall
that the specific form of a linear equation thus far has been:

dy

dt
= −ay + b

We expand this to be more general, defining a first order linear differential equation to
be:

dy

dt
+ p(t)y = g(t)

Or alternatively:

P (t)
dy

dt
+Q(t)y = G(t)

2.3.1 Direct Integration

Some equations of the later form can be solved by direct integration. To verify this, divide
the equation by P (t), and factor to attempt to separate the t’s and y’s on either side of the
equation. Then, if possible, attempt to integrate both sides.

Consider the general form of the equation (representing a separable, first-order linear
ordinary differential equation):

M(x, y) +N(x, y)
dy

dx
= 0
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We write it in separated form as:

M(x)dx+N(y)dy = 0

Then solve and integrate both sides. To find φ, we solve for y(0) = y0.

2.3.2 Integrating Factor

Unfortunately, in the overwhelming majority of differential equations of this classification,
the above technique cannot be applied. Instead, we find a function µ(t) which we call an
integrating factor.

Our goal is to find a function µ(t), which when treated as follows:

µ(t)P (t)
dy

dt
+ µ(t)Q(t)y = µ(t)G(t)

Consider a general equation of the form dy
dt

+ p(t)y = g(t). In general, we go as follows:

dy

dt
+ p(t)y = g(t)

Multiply both sides of the equation by our integrating factor, µ(t).

µ(t)
dy

dt
+ µ(t)p(t)y = µ(t)g(t)

Solve for µ(t) so that d
dt

[µ(t)y] is equal to the left-hand side of the above equation:

d

dt
[µ(t)y] =

dµ(t)

dt
y +

dy

dt
µ(t)︸ ︷︷ ︸

Product Rule

=

Left-hand side︷ ︸︸ ︷
µ(t)

dy

dt
+ µ(t)p(t)y

Provided that:

dµ(t)

dt
y = µ(t)p(t)y ⇐⇒ dµ(t)

dt
= µ(t)p(t)

Assume that µ(t) > 0. Then we have:

dµ(t)
dt

µ(t)
= p(t)

dµ(t)

µ(t)
= p(t)dt∫

dµ(t)

µ(t)
=

∫
p(t)dt

ln |µ(t)| =
∫
p(t)dt+ k

µ(t) = e
∫
p(t)dt
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Note that we now have (per above) that:

d

dt
[µ(t)y] = µ(t)g(t)

Therefore:

µ(t)y =

∫
µ(t)g(t)dt

Thus, the general solution of dy
dt

+ p(t)y = g(t) is given as:

y =
1

µ(t)

[∫ t

t0

µ(s)g(s) ds+ C

]

2.4 Modeling

Mathematical models are a useful tool to approximate real-world processes. Often times,
differential equations are a particularly useful model. When creating a model of a real-world
process and/or event, we must note the shortcomings of that model, and analyze it against
our actual observations. Nonetheless, these models are a useful tool for approximation. We
describe several general examples here:

2.4.1 Mixing

Suppose there is a tank that at time t0 contains volume Q0 of salt. We write dQ
dt

(the rate of
change of salt in the tank with respect to time) as:

dQ

dt
= rate in− rate out

Consider “rate in”. We are given a concentration of salt flowing into the tank (in mass
per volume) and a flow rate (in volume per time). We determine the “rate in” as the product
of the two.

Consider “rate out”. We are given that the tank is stirred continually (i.e., that the
concentration of salt is uniform throughout the tank). We are given that the rate of flow out
is r (in volume per time), and know the volume of the tank. Thus, the “rate out” is given to
be the product of the flow rate, the total amount of salt, divided by the volume of the tank.

We solve this by the method of integrating factors, as (according to example 2.3.1 in the
book):

dQ

dt
=
r

4
− rQ

100
and Q(0) = Q0

Rewriting into the standard form of a linear equation, we obtain:

dQ

dt
+
rQ

100
=
r

4

Therefore:
µ(t) = e

rt
100 and Q(t) = 25 + (Q0 − 25)e−

rt
100
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2.4.2 Compound Interest

Suppose that you have a bank account that pays an interest rate annually at r. The value
S(t) of your investment is determined continually. Thus, the rate at which your investment
size changes is given as:

dS

dt
= rS and S(0) = S0

We can therefore see that the equation is both linear and separable. Thus:

S(t) = S0e
rt

2.4.3 Escape Velocity

Suppose that we project a body of mass away from the earth at v(0) = v0. We find the
maximum height ξ that the body will reach, and the minimum such v0 to ensure that the
body does not return to earth (read: escape velocity).

Note that the force acting on a body as a function of its position and earth’s gravity is
given as:

F (x) = m
dv

dt
= − mgR2

(R + x)2

We note also that:
dv

dt
=
dv

dx

dx

dt
=
dv

dx
v

Therefore,

F (x) = ��mv
dv

dx
= − ��mgR2

(R + x)2

We note that this equation is separable, but not linear, so it is solved by:

1

2
v2 =

gR2

(R + x)
+ C and v = ±

√
v20 − 2gR +

2gR2

R + x

To solve for its maximum altitude, x = ξ, set v = 0, and x = ξ, and obtain:

ξ =
v20R

2gR− v20

To find the initial velocity, v = v0, required to lift the body to height x = ξ, we solve:

v0 =

√
2gR

ξ

R + ξ

And to find the escape velocity, we note that:

ve = lim
ξ→∞

√
2gR

ξ

R + ξ
=
√

2gR
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2.5 Autonomous Equations

Another class of differential equation is one where the independent variable does not explicitly
appear. Such an equation is called autonomous :

dy

dt
= f(y)

2.5.1 Exponential Population Dynamics

Suppose that we assume a growth rate, r, proportional to the size of the population at a
given time, t, y(t). Let y = φ(t) be the size of the population at a given time. Therefore,

dy

dt
= ry

Subject to the initial condition y(0) = y0, we obtain that:

y = y0e
rt

2.5.2 Logistic Population Dynamics

Suppose instead that the rate of growth itself depends on the population, such that r = h(y).
Then:

dy

dt
= h(y)y

We wish to use a h(y) ' r > 0. We use the Verhulst equation (oftentimes, “the logistic
equation”) such that:

dy

dt
= r(1− y

K
)y

Where K = r
a
, and r is the intrinsic growth rate.

We seek simple, constant functions for y, such that y = φ1 = 0 and y = φ2 = K. We
classify these solutions as equilibrium solutions. We further describe them by:

Stable equilibrium solution An equilibrium solution that is converged upon from both
sides.

Semi-stable equilibrium solution An equilibrium solution that is converged upon from
one, but not both sides.

Unstable equilibrium solution An equilibrium solution that is diverged upon from both
sides.

A phase line is used as an accompanying context to the y-axis to, for each equilibria, show
whether we are converging towards or away from that solution.

If we wish to solve the specific equation, we go as follows:

dy

(1− y
K

)y
= r dt
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And perform a partial fraction expansion on the left-hand side as:(
1

y
+

1
K

1− y
K

)
dy = r dt

Therefore,

ln |y| − ln
∣∣∣1− y

K

∣∣∣ = rt+ C



Chapter 3

Second Order Differential Equations

A second-order, ordinary differential equation is of the form:

d2y

dt2
= f

(
t, y,

dy

dt

)
Such a second-order differential equation is said to be linear if and only if f is of the form:

f = g(t)− p(t)dy
dt
− q(t)y

When in this case, we usually write the first equation as:

y′′ + p(t)y′ + q(t)y = g(t)

We focus on the analysis of linear second-order ODEs. In order to solve an Initial Value
Problem, we require additional information about the initial condition of y′(t0). A second-
order I.V.P. is given as: 

y′′ + p(t)y′ + q(t)y = g(t)

y(t0) = y0

y′(t0) = y′0

3.1 Homogeneity

A second-order ODE is called “homogeneous” when the term g(t) (or, G(t)) is zero in all
cases. A second-order ODE is called “non-homogeneous” when there exist values of t such
that g(t) 6= 0.

3.2 Homogeneous Second-Order Differential Equations

Consider differential equations of the form

ay′′ + by′ + cy = 0

13
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We will proceed to develop a method for solving such equations. We presume that solutions
will be of the form y = ert, where r is a parameter yet to be determined. Therefore,

y′ = rert and y′′ = r2ert

We simplify to obtain:
(ar2 + br + c)ert = 0

And, since ert 6= 0:
ar2 + br + c = 0

Note that for any solutions y1(t), and y2(t), y(t) = y1(t) + y2(t) is also a solution. Therefore,
it follows also that:

y(t) = c1y1(t) + c2y2(t) ⇐⇒ y(t) = c1e
r1t + c2e

r2t

Suppose that y(t0) = y0 and y′(t0) = y′0. We obtain the following:

y0 = c1e
r1t0 + c2e

r2t0 and y′0 = c1r1e
r1t0 + c2r2e

r2t0

We solve each, to discover that:

c1 =
y′0 − y0r2
r1 − r2

e−r1t0 and c2 =
y0r1 − y′0
r1 − r2

e−r2t0

3.3 Homogeneous Complex Second-Order Differential

Equations

In the previous section, we considered roots only where the discriminant (b2 − 4ac) was
positive. Consider instead the situation where b2 − 4ac < 0. Thus, the roots r1 and r2 are
the conjugates of complex numbers, and are denoted by:

r1 = λ+ iµ and r2 = λ− iµ

Thus:
y1 = e(λ+iµ)t and y2 = e(λ−iµ)t

3.3.1 Euler’s Formula

We define what it means to exponentiate by a complex function. Recall that the Taylor
series for et (around t = 0) is given by:

et =
∞∑
n=0

tn

n!
, t ∈ R



CHAPTER 3. SECOND ORDER DIFFERENTIAL EQUATIONS 15

Assume that it is substitutable for t in the above equation. We separate the series expansion
using the definition of exponentiating i. We therefore obtain:

eit =
∞∑
n=0

(it)n

n!

=
∞∑
n=0

(−1)nt2n

(2n)!︸ ︷︷ ︸
Taylor Series, cos(t)

+i ·
∞∑
n=0

(−1)n−1t2n−1

(2n− 1)!︸ ︷︷ ︸
Taylor Series, sin(t)

= cos(t) + i · sin(t)

Given that eit = cos(t) + i · sin(t), we note that

eiµt = cos(µt) + i · sin(µt)

In general, we want for
e(λ+iµ)t = eλteiµt

We therefore obtain that:

e(λ+iµ)t = eλt(cos(µt) + i · sin(µt))

= eλt cos(µt) + ieλt sin(µt)

And that:
e(λ−iµ)t = eλt cos(µt)− ieλt sin(µt)

3.3.2 Simplifying when b2 − 4ac < 0

When b2 − 4ac < 0, the discriminant tells us that we have two complex solutions as above:
r = λ± iµ. We recall the judgement on y1, y2, to obtain that a solution is:

y = C1e
(λ+iµ)t + C2e

(λ−iµ)t

Recall that e(λ+iµ)t = eλt(cos(µt) + i · sin(µt)). Therefore, by some trigonometric identities,
we obtain that:

y = C1e
(λ+iµ)t + C2e

(λ−iµ)t

= C1e
(λ+iµ)t + C2e

(λ−iµ)t

= C1

[
eλt cos(µt) + ieλt sin(µt)

]
+ C2

[
eλt cos(µt)− ieλt sin(µt)

]
= (C1 + C2)e

λt cos(µt) + (C1 − C2)ie
λt sin(µt)

= a1e
λt cos(µt) + a2e

λt sin(µt)
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3.3.3 Solving the I.V.P

Now we wish to solve the Initial Value Problem for the above. Suppose that:
y = a1e

λt cos(µt) + a2e
λt sin(µt)

y(0) = α

y′(0) = β

Begin by differentiating y to obtain:

y′ =
d

dt

[
a1e

λt cos(µt) + a2e
λt sin(µt)

]
=

d

dt

[
eλt(a1 cos(µt) + a2 sin(µt))

]
= λeλt(a1 cos(µt) + a2 sin(µt)) + eλt(−µa1 sin(µt) + µa2 cos(µt))

= λy(t) + eλt(−µa1 sin(µt) + µa2 cos(µt))

Noting that we make the final substitution of y(t) in the last line in order to make the
numerical solution easier to manage. Often the initial value problem will be given in terms
of y(0), and y′(0), which makes the sin(µt)→ 0 and cos(µt)→ 1.

A common example is shown below. We begin with solving for y(0) = α:

y(0) = α = a1e
λ·0 cos(µ · 0) + a2e

λ·0 sin(µ · 0)

= a1

Now we solve for y′(0) = β:

y′(0) = β = λy(0) + eλt(−µa1 sin(µt) + µa2 cos(µt))

= λα + µa2

3.4 Homogeneous Second-Order Differential Equations

with Repeated Roots

Now we move our consideration to when the discriminant says that there are repeated, real
roots, i.e., when b2 − 4ac = 0.

We consider the general case of

ay′′ + by′ + cy = 0

We note that

r = r1 = r2 =
−b±

√
b2 − 4ac

2a
= − b

2a

and therefore that one such solution is given as

y1(t) = e(−b/2a)t
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We now perform the d’Alembert procedure, and let

y(t) = v(t)y1(t) = v(t)e(−b/2a)t

We substitute our solution for y(t) into the original differential equation. In order to do so,
we must first obtain y′′(t) and y(t). We go as follows:

y′(t) = v′(t)e(−b/2a)t +
−b
2a
v(t)e(−b/2a)t

y′′(t) = v′′(t)e(−b/2a)t − b

a
v′(t)e(−b/2a)t +

(
b

2a

)2

v(t)e(−b/2a)t

Then, we substitute into ay′′ + by′ + cy = 0 to obtain:

e(−b/2a)t

{
a

[
v′′(t)− b

a
v′(t) +

(
b

2a

)2

v(t)

]
+ b

[
v′(t) +

−b
2a
v(t)

]
+ c · v(t)

}
= 0

Which we simplify to:

av′′(t) + (−b+ b)v′(t) +

(
b2

4a
− b2

2a
+ c

)
v(t) = 0

And further until we note that:

v′′(t) = 0 and v(t) = c1 + c2t

Therefore y is solved by:
y = C1 · e(−b/2a)t + C2t · e(−b/2a)t

3.4.1 Reduction of Order

Suppose that we have a solution, y1(t) for the following differential equation:

y′′ + p(t)y′ + q(t)y = 0

And we wish to obtain a second solution. Let:

y = v(t)y1(t)

then:
y′ = v′(t)y1(t) + v(t)y′1(t)

and:
y′′ = v′′(t)y1(t) + v′(t)y′1(t) + v′(t)y′1(t) + v(t)y′′1(t)

= v′′(t)y1(t) + 2v′(t)y′1(t) + v(t)y′′1(t)

We then substitute as above and obtain that:

y1 · v′′ + (2y′1 + py1)v
′ + (y′′1 + py′1 + qy1)v = 0

therefore:
y′′1 + (2y′1 + py1)v

′ = 0

Which is a first order linear differential equation of v′, and we can solve it using our usual
methods. Then, we can find v′ →∫ v.
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3.5 Summary

When considering differential equations of the form:

ay′′ + by′ + cy = 0

We write the “characteristic equation” of the above as follows:

ar2 + br + c = 0

Noting that r is solved by the quadratic formula as:

r =
−b±

√
b2 − 4ac

2a

And we solve the differential equation using one of three methods based on the discriminant
of the characteristic equation:

b2 − 4ac > 0 There exist two real, distinct roots r1, r2 ∈ R where r1 6= r2, such that an initial
value problem can be solved by:

y(t) = C1e
r1t + C2e

r2t

b2 − 4ac = 0 There exists a single real, repeated root r ∈ R, such that the initial value
problem is solved by:

y(t) = C1e
rt + C2te

rt

b2 − 4ac < 0 There exist two complex, distinct roots r1, r2 ∈ Z, where r1 6= r2, such that an
initial value problem can be solved by:

y(t) = eλt (C1 cos(µt) + C2 sin(µt))

3.6 Method of Undetermined Coefficients

So far, we have solved equations of the form:

ay′′ + by′ + cy = 0

But what if we wanted to solve an equation of the form:

ay′′ + by′ + cy = g(t)

where g(t) 6= 0? To do this, we introduce and make use of the “Method of Undetermined
Coefficients”1.

1These notes are based on Loveless’, which are found here: https://sites.math.washington.edu/

~aloveles/Math307Spring2016/m307Review3-5.pdf.

https://sites.math.washington.edu/~aloveles/Math307Spring2016/m307Review3-5.pdf
https://sites.math.washington.edu/~aloveles/Math307Spring2016/m307Review3-5.pdf
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We begin by solving a simpler differential equation, where g(t) = 0 using one of the
methods above to obtain two independent solutions to the homogeneous equation, y1(t), and
y2(t).

Then, we consider g(t), and use the following table to find the likely form for a particular
solution, Y (t):

g(t) ert sin(µt) or cos(µt) C t t2 t3

Y (t) Aert A cos(µt) +B sin(µt) A At+B At2 +Bt+ C At3 +Bt2 + Ct+D

Figure 3.1: Common particular solutions

Combining particular solutions If g(t) is a sum or difference of any of the above types,
then so is Y (t). Further, if g(t) is a product, then so is Y (t), with the additional caveat that
extra coefficients may be “factored” out.

Adjusting for homogeneous solutions If Y (t) contains a constant multiple of either
y1(t) or y2(t), then multiply by t (e.g., Y (t) = tn · Y (t)) until this is no longer the case.

Once we have an adjusted particular solution, we use it to find Y ′(t) and Y ′′(t), and
substitute these values into the original equation in order to find the constants A, B, and so
on in Y .

Finally, the general solution is given as:

y(t) = C1y1(t) + C2y2(t) + Y (t).

We can then use the initial conditions y(0) = α and y′(0) = β in order to solve for C1

and C2.

3.7 Mechanical Vibrations

Consider a mass m hanging at rest on a prefect spring of original length l. When the mass
m is attached, the spring elongates to L. In the static case, there are two forces at play:

Fg = −mg and Fs = −kL

Fg is the downwards pull of gravity on the mass-spring system, and Fs is a consequence of
Hooke’s Law, that the force on a perfect spring is proportional (with proportionality constant
k) to the elongated distance, L.

Let u(t) denote the displacement of the mass from the equilibrium position at time t,
where u(t) grows downward. Note that by Newton’s Second Law:

mu′′(t) = f(t)

We observe the following:
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1. The weight Fg = mg acts downward.

2. The spring force Fs is proportional to the total elongation L+u(t), Fs(t) = −k(L+u(t)).

3. The damping force, Fd, opposes the force of the motion of the mass. We denote this
as: Fd = γu′(t).

4. F (t) is the applied external force.

We rewrite this all as:

mu′′(t) = mg + Fs(t) + Fd(t) + F (t)

= mg − k(L+ u(t))− γu′(t) + F (t)

To obtain an initial value problem:
mu′′(t) + γu′(t) + ku(t) = F (t)

u(0) = u0

u′(0) = v0

3.7.1 Undamped Free Vibrations (γ = 0)

If there is no external force and no damping, we note that F (t) = γ = 0. In this case, the
motion of a spring is described by the following:

mu′′(t) + ku = 0

Which is a constant coefficient 2nd-order ordinary differential equation with complex roots.
The solution is given by:

u = C1 cos(µt) + C2 sin(µt)

This is sometimes rewritten as either of the following:

. . . = R cos(ω0t− δ)
= R cos δ cos(ω0t) +R sin δ sin(ω0t)

Note that the parameters of the above equation are given as follows:

A = R cos(δ) and B = R sin(δ)

Therefore:

R =
√
A2 +B2 and tan(δ) =

B

A

Note that the frequency of this system is given as:

T =
2π

ω0

= 2π

√
m

k

ω0 =
√
k/m is often called the natural frequency, whereas R is referred to as the amplitude.

The dimensionless parameter δ is the phase.
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3.7.2 Damped Free Vibrations (γ > 0)

When we consider damping, the differential equation is given as:

mu′′ + γu′ + ku = 0

The roots of the characteristic equation of the above are, unsurprisingly:

r =
−γ ±

√
γ2 − 4km

2m

We consider (again) three cases on the discriminant of the characteristic equation above:

γ2 − 4km > 0 In this case we say that the system is overdamped. The differential equation
is solved by:

y = C1e
r1t + C2e

r2t

Note that in this case, the limt→∞ u(t) = 0.

γ2 − 4km = 0 In this case we say that the system is critically damped. The differential
equation is solved by:

y = C1e
rt + C2te

rt

γ2 − 4km < 0 In this case we note that system is underdamped, i.e., there are two complex
roots, where:

λ =
−γ
2m

and µ =

√
4mk − γ2

2m

(Often the solutions are written as r = λ± iω0). Thus, the solution looks like:

y = C1e
λt cos(µt) + C2e

λt sin(µt)

Which we often write as:
y = Reλtcos(µt− δ)

Where R =
√
C2

1 + C2
2 , C1 = R cos(δ), and C2 = R sin(δ). δ = tan(B/A) (as above).

The graphical solution of this initial value problem is an exponentially decreasing
sinusoidal curve converging towards 0. We define a few properties of this system:

Quasi-frequency is µ =
4mk − γ2

2m
radians per second.

Quasi-period is T =
2π

µ
seconds/wave.

Amplitude is given as Reλt, where limt→∞Re
λt = 0.

When γ = 0, we say that the system is undamped, and the solution is given as:

y = C1 cos(µt) + C2 sin(µt)

And the graphical solution oscillates with no decay.
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3.7.3 Kirchhoff’s Law

In a RLC-circuit, we denote the voltage source, resistance, inductance, and capacitance as:
V , R, L, and C, respectively. Denote q as the charge. Kirchhoff’s Law says:

Lq′′ +Rq′ +
q

C
− V (t) = 0

3.8 Forced Mechanical Vibrations

We consider an analysis of forced mechanical vibrations, i.e., when F (t) 6= 0. To focus our
analysis, we consider only the case where F (t) takes the form of:

F (t) = R cos(ωt)

Thus, the differential equation involving the displacement function u(t) at time t, is written
as:

mu′′ + γu′ + ku = F0 cos(ωt)

3.8.1 Undamped Forced Vibrations (γ = 0)

This case is modeled by:
mu′′ + ku = F0 cos(ωt)

The homogeneous and particular solution(s) have the form:

uc(t) = C1 cos(ω0t) + C2 sin(ω0t) and up(t) = A cos(ωt) +B sin(ωt)

Note that up may also be written as:

up(t) = At cos(ωt) +Bt sin(ωt)

depending on whether or not ω = ω0. For more, see a previous discussion on the Method of
Undetermined Coefficients.

We observe the following two cases on ω and ω0:

Case 1 (ω 6= ω0)

u(t) = C1 cos(ω0t) + C2 sin(ω0t) +
F0

m(ω2
0 − ω2)

Case 2 (ω = ω0)

u(t) = C1 cos(ω0t) + C2 sin(ω0t) +
F0

2mω0

t sin(ω0t)

Note that the limit of limt→∞ t sin(ω0t) does not exist, and the function is unbounded!
This is is a demonstrated effect of resonance.
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3.8.2 Damped Forced Vibrations (γ > 0)

The general solution to this situation is given as:

u(t) = C1u1(t) + C2u2(t)︸ ︷︷ ︸
Homogegnous solution(s)

+A cos(ωt) +B sin(ωt)︸ ︷︷ ︸
Particular solution

Note that the homogeneous solution “dies out” as t → ∞. This solution allows us to
meet initial conditions, but is eventually dominated by the particular solution, which we call
the steady state solution or forced response.

It is often convenient to write the solution in wave form, as:

U(t) = R cos(ωt− δ)

Where:

R =
F0

∆
cos(δ) =

m(ω2
0 − ω2)

∆
and sin(δ) =

γω

∆

ω0 =
√
k/m ∆ =

√
m2(ω2

0 − ω2)2 + γ2ω2

Thus, the amplitude of the steady state resonance, R is given as:

R =
F0

k

[(
1− ω2

ω2
0

)2

+
γ2

mk

ω2

ω2
0

]−1/2
Note that the following two limits exist:

lim
ω→0

R =
F0

k
and lim

ω→∞
R = 0



Chapter 4

Laplace Transformations

4.1 Introduction

4.1.1 Improper Integral

Recall that an improper integral is one whose upper- or lower-limit is equal to ±∞. We
evaluate these integrals as follows:∫ ∞

a

f(t)dt = lim
A→∞

∫ A

a

f(t)dt

We say that these integrals converge when their limit is defined, and that they divere other-
wise.

4.1.2 Piecewise Continuity

We say that a function f is piecewise continuous if and only if on an interval f can be
partitioned where in each interval, f is both continuous, and approaches a finite limit at the
endpoints when approached from within the interval.

Theorem 1. If f is piecewise continuous for t ≥ a, |f(t)| ≤ g(t) when t ≥M , and

∫ ∞
M

g(t)dt

converges, then

∫ ∞
a

f(t)dt converges.

4.1.3 Definition of the Laplace Transformation

The Laplace Transformation is defined as follows:

L{f(t)} =

∫ β

α

K(s, t)f(t)dt =

∫ ∞
0

e−stf(t)dt

Where K(s, t) is the kernel of the transformation, and the limits of integration are given.

Theorem 2. Suppose that f is piecewise continuous on the interval [0, A], and |f(t)| ≤ Keat

(where K, a,M ∈ R and K,M > 0). Then, the transformation L{f(t)} exists.

24



CHAPTER 4. LAPLACE TRANSFORMATIONS 25

Finally, note that the Laplace Transformation is linear:

L{C1f1(t) + C2f2(t)} =

∫ ∞
0

e−st [C1f1(t) + C2f2(t)] dt

= C1

∫ ∞
0

e−stf1(t)dt+ C2

∫ ∞
0

e−stf2(t)dt

= C1L{f1(t)}+ C2L{f2(t)}

4.2 Solutions to Initial Value Problems

Theorem 3. Suppose that f is continuous and f ′ is piecewise continuous on [0, A]. Suppose
that ∃K, a,M. |f(t)| ≤ Keat for t ≥M . Then:

L{f ′(t)} = sL{f(t)} − f(0)

Corollary 1. Suppose that the functions f, f ′, . . . , f (n−1) are continuous, and that f (n) is
piecewise continuous on [0, A]. If there exists K, a,M (as above), such that for any n,
|f (n)(t)| ≤ Keat, then L

{
f (n)(t)

}
exists, and is given as:

L
{
f (n)(t)

}
= snL{f(t)} −

n∑
i=1

sn−if i−1(0)

4.2.1 Homogeneous Differential Equations

Consider the general second-order linear initial value problem:
ay′′ + by′ + cy = 0

y(0) = α

y′(0) = β

We solve this equation using the Laplace Transformation. We begin as follows by taking the
Laplace Transformation of both sides, and applying the linearity of the Laplace Transforma-
tion:

y = L−1
{
asy(0) + ay′(0) + by(0)

as2 + bs+ c

}
For more, see: A.1.

4.2.2 Non-homogeneous Differential Equations

Similarly, for initial value problems of the form:
ay′′ + by′ + cy = f(t), f(t) 6= 0

y(0) = α

y′(0) = β
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We go as above:

L{y(t)} (s) =
L{F (t)} (s) + (asy(0) + ay′(0) + by(0))

as2 + bs+ c

For more, see: A.2.
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4.2.3 Elementary Laplace Transformations

f(t) = L−1 {F (s)} F (s) = L{f(t)}

1. 1
1

s
, s > 0

2. eat
1

s− a
, s > a

3. tn, n > 0
n!

sn+1
, s > 0

4. tp, p > −1
Γ(p+ 1)

sp+1
, s > 0

5. sin at
a

s2 + a2
, s > 0

6. cos at
s

s2 + a2
, s > 0

7. sinh at
a

s2 − a2
, s > |a|

8. cosh at
s

s2 − a2
, s > |a|

9. eat sin bt
b

(s− a)2 + b2
, s > a

10. eat cos bt
s− a

(s− a)2 + b2
, s > a

11. tneat, n > 0
n!

(s− a)n+1
, s > a

12. uc(t)
e−cs

s
, s > 0

13. uc(t)f(t− c) e−csF (s), s > 0

14. ecf(t) F (s− c)

15. f(ct)
1

c
F
(s
c

)
, c > 0

16.

∫ t

0

f(t− τ)g(τ)dτ F (s)G(s)

17. δ(t− c) e−cs

18. f (n)(t) snF (s)− sn−1f(0)− · · · − f (n−1)(0)

19. (−t)nf(t) F (n)(s)

Table 4.1: Elementary Laplace Transformations
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4.3 Inverse Laplace Transformations

Given a function F (s), we wish to find f(t) such that1:

L−1 {F (s)} (t) = L{f(t)} (s) ⇐⇒ L{f(t)} (s) = L−1 {F (s)} (t)

Often, a Laplace Transformation comes out to be a quotient of polynomial terms, as:

R(s) =
P (s)

Q(s)

Before taking any further steps, we apply the following:

1. If the power of the numerator P is greater than or equal to the power of Q, then use
long-division to rewrite R.

2. Factor Q, and complete the square otherwise.

3. Write the linear decomposition:

• For terms of the form (x− a), rewrite as:
A

x− a
.

• For terms of the form (x− a)n, rewrite as:
n∏
i=1

Ai
(x− a)i

For example, (x− a)3 =
A

x− a
+

B

(x− a)2
+

C

(x− a)3
.

• For quadratic terms (e.g., those of the form x2 + a2), decompose as:
Ax+B

x2 + a2
.

• For repeated quadratic terms, decompose as:
n∏
i=1

Aix+Bi

(x2 + a2)i
.

4. Finally, solve and write the partial fraction decomposition. Then, use the Inverse
Laplace Transformation (see: values from the above table) in order to compute y(t).

There are a few tricks to speeding this process up:

4.3.1 “Cover-up” method

For each term in the decomposition with an unknown numerator (e.g., A, B, and so on...),
take the root of the denominator and evaluate R at those roots. This will take Q to 0, but
ignore these terms. The “covered up” value of R at each root is the value of that root’s
numerator in the decomposition.

1 This section of notes are based on Loveless’, which are found here: https://sites.math.washington.
edu/~aloveles/Math307Spring2015/m307PartialFractions.pdf.

https://sites.math.washington.edu/~aloveles/Math307Spring2015/m307PartialFractions.pdf
https://sites.math.washington.edu/~aloveles/Math307Spring2015/m307PartialFractions.pdf
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Example 4.3.1. Consider the partial fraction decomposition:

x2 + 2

x(x+ 1)(x+ 2)
=
A

x
+

B

x+ 1
+

C

x+ 2

We find each by evaluating the original goal at the roots for A, B, and C, which are 0, −1,
and −2, respectively.

x2 + 2

�x (x+ 1)(x+ 2)

∣∣∣∣
x=0

= 1 =⇒ A = 1

x2 + 2

x����(x+ 1)(x+ 2)

∣∣∣∣
x=−1

= −3 =⇒ B = −3

x2 + 2

x(x+ 1)����(x+ 2)

∣∣∣∣
x=−2

= 3 =⇒ C = 3

Hence:
x2 + 2

x(x+ 1)(x+ 2)
=

1

x
− 3

x+ 1
+

3

x+ 2

4.3.2 Enhanced “cover-up” method

For repeated terms (e.g., linear/n-ary terms with power greater than 1), the above method is
insufficient. Proceed as far as possible with it against linear terms, and then cross multiply
and “match coefficients” to produce a system of equations that solves for the remaining
terms.

Example 4.3.2. Consider the partial fraction decomposition:

5

(x+ 1)(x− 2)2
=

A

x+ 1
+

B

x− 2
+

C

(x− 2)2

We use the cover up method to find that A = 5/9, and C = 5/3. To find B, we begin as:

5

(x+ 1)(x− 2)2
=

5

9(x+ 1)
+

B

x− 2
+

5

3(x− 2)2

Solving for B, we obtain:

5 =
5

9
(x− 2)2 +

B(x+ 1)

x− 2
+

5

3
(x+ 1)

One coefficient involving B is on the term labelled x2. We find therefore that B = −5/9,
hence:

5

(x+ 1)(x− 2)2
=

5

9(x+ 1)
− 5

9(x− 2)
+

5

3(x− 2)2

4.3.3 Complex “cover-up” method

When the denominator has complex roots, find them using the quadratic formula, and R in
terms of this (e.g., x2 + 1 goes to (x + i)(x − i)). Use the cover-up method with ±i, and
solve.
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4.4 Step Functions

Define the unit step function or the Heaviside function to be:

uc(t) =

{
0, t < c,

1, t ≥ c.

This function has many important applications; we study three ways that this function
composes other functions here:

1. Piecewise functions of many values: we can add many unit step functions together with
different values of c, and interpret their solutions graphically as well as numerically.

2. Piecewise functions can “mute” a section of a function, by multiplying it to that func-
tion, for a particular c.

We demonstrate the Laplace Transformation of the unit step function as follows:

L{uc(t)} =

∫ ∞
0

e−stuc(t) =

∫ ∞
c

e−stdt

=
e−cs

s
, s > 0

Theorem 4. If F (s) = L{F (t)} exists, then:

L{uc(t)f(t− c)} = e−csL{f(t)} = e−csF (t)

Proof.

L{uc(t)f(t− c)} =

∫ ∞
0

e−stuc(t)f(t− c)dt

=

∫ ∞
c

e−stf(t− c)dt

Let ξ = t− c, and dξ = dt. Therefore:

L{uc(t)f(t− c)} =

∫ ∞
0

e−(ξ+c)sf(ξ)dξ = e−cs
∫ ∞
0

e−sξf(ξ)dξ

= e−csL{f(t)}

Theorem 5. If F (s) = L{f(t)} exists, then:

L
{
ectf(t)

}
= F (s− c)

Conversely, if f(t) = L−1 {F (s)}, then:

ectf(t) = L−1 {F (s− c)}

Proof.

L
{
ectf(t)

}
=

∫ ∞
0

e−stectf(t)dt =

∫ ∞
0

e−(s−c)tf(t)dt

= F (s− c)
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4.5 Impulse Functions

We wish for formalisms describing an initial “impulse” to a system that has certain properties
which we describe below. We begin by definition a function dτ which is given as:

dτ (t) =


1

2τ
t ∈ (−τ, τ)

0 t 6∈ (−τ, τ)

Let I be defined as:

I(t) =

∫ τ

−τ

1

2τ
dt =

∫ ∞
−∞

dτdt

Note that:
lim
τ→0+

dτ (t) = 0, t 6= 0 and lim
τ→0+

I(t) = 1

I is in fact called δ, or the Dirac delta function

4.6 The Convolution Integral

Suppose that we are given a functions f , g, and h in the time domain. Further suppose
that H(s) = F (s)G(s). It is reasonable to conclude that h(t) = fg, but this is not the case.
Instead, h is the convolution of f and g.

Theorem 6. If F (s) = L{f(t)} (s), and G(s) = L{g(t)} (s), then:

H(s) = F (s)G(s) = L{h(t)} (s)

where:

h(t) =

∫ t

0

f(t− τ)g(τ) dτ =

∫ t

0

f(τ)g(1− τ) dτ

Proof. We know that:

F (s) =

∫ ∞
0

e−sξf(ξ) dξ

and

G(s) =

∫ ∞
0

e−sτg(τ) dτ

thus:

F (s)G(s) =

∫ ∞
0

e−sξf(ξ) dξ

∫ ∞
0

e−sτg(τ) dτ

Since ξ 6= τ , we can write the above as an iterated integral:

F (s)G(s) =

∫ ∞
0

e−sτg(τ)

[∫ ∞
0

e−sξf(ξ) dξ

]
dτ

=

∫ ∞
0

g(τ)

[∫ ∞
0

e−s(ξ+τ)f(ξ) dξ

]
dτ
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Let ξ = t− τ for fixed τ , so that dξ = dτ . We rewrite the above integral as:

F (s)G(s) =

∫ ∞
0

g(τ)

[∫ ∞
τ

e−stf(t− τ) dt

]
dτ

By Fubini’s Theorem, we can reverse the order of integration to obtain:

F (s)G(s) =

∫ ∞
0

e−st
[∫ t

0

f(t− τ)g(τ) dτ

]
dt

or

F (s)G(s) =

∫ ∞
0

e−sth(t) dt = L{h(t)} (s).

In the above, the convolution h is often written as:

h = (f ∗ g)(t)

Note that the symbol ∗ is not the same as composition, which is denoted ◦.

4.6.1 Properties of ∗
The convolution integral is commutative, meaning that it can be written as the convolution
of its first and second operand, or its second and first operand.

f ∗ g = g ∗ f

It is also distributive, meaning that it distributes like +, and so on.

f ∗ (g1 + g2) = f ∗ g1 + f ∗ g2

∗ is associative, which means that the “grouping” of terms under convolution does not
matter.

f ∗ (g ∗ h) = (f ∗ g) ∗ h

∗ also has a “zero”, meaning that if you convolute any function with 0, or 0 with any function,
the resoling convolution is itself 0.

f ∗ 0 = 0 ∗ f = 0

4.6.2 Solving Initial Value Problems with Convolution

Suppose that we are given a classic initial value problem of the form:
ay′′ + by′ + cy = g(t)

y(0) = y0

y′(0) = y′0
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Using a result proven in A.2, we obtain that:

(as2 + bs+ c)L{y(t)} (s)− (as+ b)y0 − ay′0 = L{g(t)} (s)

and letting:

Φ(s) =
(as+ b)y0 + ay′0
as2 + bs+ c

and Ψ(s) =
L{g(t)} (s)

as2 + bs+ c

we can write that:
L{y(t)} (s) = Φ(s) + Ψ(s)

or:
y(t) = L−1 {Φ(s)} (t) + L−1 {Ψ(s)} (t)

= φ(t) + ψ(t)

Crucially, note the following:

φ(t) :


ay′′ + by′ + cy = 0

y(0) = y0

y′(0) = y′0

and ψ(t) :


ay′′ + by′ + cy = g(t)

y(0) = 0

y′(0) = 0

Let H(s) be given as follows:

H(s) = L{h(t)} (s) =
1

as2 + bs+ c

thus, we write:
Ψ(s) = H(s)G(s)

and call H the transfer function. Thus,

ψ(s) = L−1 {H(s)G(s)} (t) =

∫ t

0

h(t− τ)g(τ) dτ = (h ∗ g)(t).

Where h is the impulse response of the system, and is solved by:

h :


ay′′ + by′ + cy = δ(t)

y(0) = 0

y′(0) = 0



Appendix A

A.1 Laplace Transform for Homogeneous I.V.P.’s

L{ay′′ + by′ + cy} = L{0}
aL{y′′}+ bL{y′}+ cL{y} = 0

a (sL{y′} − y′(0)) + bL{y′}+ cL{y} = 0

a (s (sL{y} − y(0))− y′(0)) + bL{y′}+ cL{y} = 0

a (s (sL{y} − y(0))− y′(0)) + b (sL{y} − y(0)) + cL{y} = 0

as2L{y} − asy(0)− ay′(0) + b (sL{y} − y(0)) + cL{y} = 0

as2L{y} − asy(0)− ay′(0) + bsL{y} − by(0) + cL{y} = 0

L{y}
(
as2 + bs+ c

)
− asy(0)− ay′(0)− by(0) = 0

asy(0) + ay′(0) + by(0) = L{y}
(
as2 + bs+ c

)
asy(0) + ay′(0) + by(0)

as2 + bs+ c
= L{y}

L−1
{
asy(0) + ay′(0) + by(0)

as2 + bs+ c

}
= y

34
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A.2 Laplace Transform for Non-homogeneous I.V.P.’s

L{ay′′ + by′ + cy} = L{f(t)}
aL{y′′}+ bL{y′}+ cL{y} = L{f(t)}

a (sL{y′} − y′(0)) + bL{y′}+ cL{y} = L{f(t)}
a (s (sL{y} − y(0))− y′(0)) + bL{y′}+ cL{y} = L{f(t)}

a (s (sL{y} − y(0))− y′(0)) + b (sL{y} − y(0)) + cL{y} = L{f(t)}
as2L{y} − asy(0)− ay′(0) + b (sL{y} − y(0)) + cL{y} = L{f(t)}
as2L{y} − asy(0)− ay′(0) + bsL{y} − by(0) + cL{y} = L{f(t)}

L {y}
(
as2 + bs+ c

)
− asy(0)− ay′(0)− by(0) = L{f(t)}

L {f(t)}+ (asy(0) + ay′(0) + by(0)) = L{y}
(
as2 + bs+ c

)
L{f(t)}+ (asy(0) + ay′(0) + by(0))

as2 + bs+ c
= L{y}

L−1
{
L{f(t)}+ (asy(0) + ay′(0) + by(0))

as2 + bs+ c

}
= y
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