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Chapter 15

Multiple Integrals

15.1 Double Integrals over Rectangles

Recall that we approximate an integral of a function of a single variable by subdividing
the region [a, b] into n sub-intervals [xi−1, xi] with ∆x = (b− a)/n, and approximate the
integral as n→ ∞ as: ˆ b

a
f (x) dx = lim

n→∞

n

∑
i=1

f (x∗i )∆x

We can interpret the above Riemann summation over a single variable as analogous
to determining the area below f , where f is a positive function. Likewise, we can take
Riemann integrals over areas to determine volume.

If we let the region R be divided into m× n sub-rectangles, and define the area of each
to be ∆A = ∆x∆y (where ∆x = (b− a/n), and ∆y is defined analogously), then we have
that:

V ≈ f (x∗ij, y∗ij)∆A

and that: ¨
R

f (x, y) dA = lim
m,n→∞

m

∑
i=1

n

∑
j=1

f (x∗ij, y∗ij)∆A

The quantity above stated on either side of the equality is the volume of the surface above
the region R and below the surface f .

15.1.1 Midpoint Rule

One can approximate the value of a double integral by taking a pseudo-Riemann sum
evaluated only at the midpoints of each sub-region:

¨
R

f (x, y) dA ≈
m

∑
i=1

n

∑
j=1

f (xij, yij)∆A

2



CHAPTER 15. MULTIPLE INTEGRALS 3

15.1.2 Average Value

Recall that we had earlier for the integral over a function of one variable that:

f [a,b] =
1

b− a

ˆ b

a
f (x) dx

Similarly, in the two-variable case, we have that:

f R =
1

A(R)

¨
R

f (x) dx

15.1.3 Properties of Double Integrals

Finally, note that double integrals are linear, meaning that they exhibit the following prop-
erties: ¨

R
( f (x, y) + g(x, y)) dA =

¨
R

f (x, y) dA +

¨
R

g(x, y) dA

Likewise, when c is a constant, we have that:¨
R

c f (x, y) dA = c
¨

R
c f (x, y) dA

Finally, if f ≥ g for all (x, y) ∈ R, then:¨
R

f (x, y) dA ≥
¨

R
g(x, y) dA

15.1.4 Iterated Integrals

Consider R = [a, b]× [c, d], and observe that:
¨

R
f (x, y) dA =

ˆ b

a

[ˆ d

c
f (x, y) dy

]
dx

When evaluating this integral, we:

• Work from the inside out, integrating f first with respect to a change in y, then with
respect to a change in x.

• “Hold” the variables not being integrated as constant with respect to the variable
currently being integrated against.

Example 15.1.1.
ˆ 3

0

ˆ 2

1
x2y dy dx =

ˆ 3

0

[
x2 y2

2

]2

y=1
dx

=

ˆ 3

0
x2
[

22 − 12

2

]
dx =

3
2

ˆ 3

0
x2 dx

=
3
2

[
x3

3

]3

0
=

27
2
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Note that it is often convenient to change the order in which a function is integrated,
and that this is a legal operation due to a theorem of Fubini.

Theorem 15.1.1 (Fubini’s). If f is continuous on a rectangle R = [a, b]× [c, d], then:
¨

R
f (x, y) dA =

ˆ b

a

ˆ d

c
f (x, y) dy dx =

ˆ d

c

ˆ b

a
f (x, y) dx dy

15.2 Double Integrals over General Regions

Call D ( R2 a non-rectangular region over which we would like to integrate f (x, y).
Then, we define:

F(x, y) =

{
f (x, y) (x, y) ∈ D
0 otherwise

if F is integrable over R (any rectangular region enclosing D), then we have that:
¨

D
f (x, y) dA =

¨
R

F(x, y) dA

• Call D a type I region if D is defined:

D = {(x, y) : x ∈ [a, b], y ∈ [g1(x), g2(x)]}

where it is convenient to treat the nested integral over a single xi, thus lending a
natural form: ¨

D
f (x, y) dA =

ˆ b

a

ˆ g2(x)

g1(x)
f (x, y) dy dx

• Likewise, we call D a type II region if DA is defined

D = {(x, y) : y ∈ [c, d], x ∈ [h1(y), h2(y)]}

and it is likewise convenient to integrate it as
¨

D
f (x, y) dA =

ˆ d

c

ˆ h2(y)

h1(y)
f (x, y) dx dy

• If D is more complicated, then we subdivide it into regions Di such that each Di is
itself either a type-I or type-II region and:

D =
⋃

i

Di, ∅ = Di ∩ Dj, i 6= j

where the later statement means that any pairwise intersection of the sub-divided
regions is non-overlapping. Therefore:

¨
D

f (x, y) dA = ∑
i

ˆ
Di

f (x, y) dA
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Note the following two properties of double integrals: first, a constant dA integrated
over D is the area of that region D:

¨
D

dA = A(D)

and that if f (x, y) ∈ [m, M] for all (x, y) ∈ D, then:

mA(D) ≤
¨

D
f (x, y) dA ≤ MA(D)

15.3 Double Integrals in Polar Coordinates

Recall the polar coordinate system, which often makes it easier to integrate over circular
or other complicated regions. Specifically, recall that:

r2 = x2 + y2, x = r cos θ, y = r sin θ, θ = arctan (y/x)

a polar rectangle is thusly defined as:

R = {(r, θ) : r ∈ [a, b], θ ∈ [α, β]}

and note that:
dA = r dr dθ

15.4 Applications of Double Integrals

• To find the mass M of a planar object with density function ρ : R2 → R, note that:

M =

¨
D

ρ(x, y) dA

• To find the average value of f in D, we have that:

f =
1

A(D)

¨
D

f (x, y) dA

and similarly to find the weighted average (according to the corresponding density
function ρ), we have:

f =
1

M(D)

¨
D

ρ(x, y) f (x, y) dA

• We also have that, for a planar object with density ρ, that the center of mass (x, y) is
given as:

x =
1

M(D)

¨
D

xρ(x, y) dA, y =
1

M(D)

¨
D

yρ(x, y) dA
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• Lastly, we can also compute the moment of inertia of an object spinning about some
axis of rotation. Note that ∆m = ρ∆A, and that v = ωr. Then, we have that:

KE =
1
2
(∆m)v2

=
1
2
(∆m)(ωr)2

=
1
2
(ρ∆A)(ωr)2 =

1
2
(r2ρ∆A)ω2

and that the moment of inertia about the origin is:

I0 =

¨
D

r2ρ dA

Likewise, the moment of inertia about the x-axis is:

Ix =

¨
D

y2ρ dA

and finally, about the y-axis:

Iy =

¨
D

x2ρ dA

15.5 Surface Area

Let S be the surface area of a solid with equation z = f (x, y), where f has continuous
partial derivatives with respect to the x-, y- and z-axes.

For simplicity, we assume that f (x, y) ≥ 0, and that the domain D is over a rectangle.
We use a Riemann-like process and divide D into sub-rectangle Rij, and a corresponding
point Pij(xi, yj, f (xi, yj)) where (xi, yj is the point in the region closest to the origin.

Taking the summation over all tangent planes, we arrive at:

A(S) = lim
m,n→∞

m

∑
i=1

n

∑
j=1

∆Tij

where Tij is the area of the tangent plane.
We must now find the area of some ∆T for a given i, j pairing. For small enough

change in x, y, this portion of the surface represents a parallelogram in 3-dimensional
space. It is uniquely defined by two perpendicular curves, which at infinitesimal zoom
appear as vectors, not curves. Let us call these vectors~a and~b. Note that:

~a = (∆x, 0, f (x0 + ∆x, y0)− f (x0, y0))

=

(
∆x, 0,

∂ f
∂x

(x0, y0)∆x
)

~b = (0, ∆y, 0, f (x0, y0 + ∆y)− f (x0, y0))

=

(
0, ∆y,

∂ f
∂y

(x0, y0)∆y
)
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To compute the area of this parallelogram, we take the matrix determinant:

a× b ≈

∣∣∣∣∣∣
î ĵ k̂

∆x 0 fx(x, y)∆x
0 ∆y fy(x, y)∆y

∣∣∣∣∣∣
= (− fx∆x∆y,− fy∆x∆y, ∆x∆y)

Then, the magnitude of |∆T| = |~a×~b|:

|∆T| ≈ |~a×~b|

=
√

f 2
x + f 2

y + 1 ∆x∆y

Integrating over the whole suface, we have:

A(S) =
¨

R

√
f 2
x + f 2

y + 1 dA

=

¨
R

√(
∂z
∂x

)2

+

(
∂z
∂y

)2

+ 1 dA

15.6 Triple Integrals

Whereas in the double integral case we integrated over a rectangular region (in the simple
case), in the tripe integral case (by contrast) we integrate over D ( R3. A simple case is
D = [a, b]× [c, d]× [e, f ].

Again, a Riemann-like argument shows that:

lim
l,m,n→∞

l

∑
i=1

m

∑
j=1

n

∑
n=1

f (x∗ijk, y∗ijk, z∗ijk) =
˚

D
f (x, y, z) dV

Note also that Fubini’s theorem extends over triple integrals as well, meaning that dV can
be broken down into any of the six combinations of dx dy dz.

We define three types of solid regions used to classify and evaluate triple integrals:

• A type I integral is given as E = {(x, y, z) : (x, y) ∈ D, z ∈ [u1(x, y), u2(x, y)]} (that
is, D is some region, and z varies between two heights.)

In this instance, it is often convenient to evaluate it as:
˚

E
f (x, y, z) dV =

¨
D

[ˆ u2(x,y)

u1(x,y)
f (x, y, z) dz

]
dA

• A type II integral is given when x varies between two constants, but y varies as a
function of x, and z as a function of x and y. In this instance, it is convenient to
integrate it the region as:

˚
E

f (x, y, z) dV =

ˆ b

a

ˆ g2(x)

g1(x)

ˆ u2(x,y)

u1(x,y)
f (x, y, z) dz dy dx
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• Finally, a type III region is one where (x, z) ∈ D, and y varies as a function of x and
z. It is typically convenient to integrate integrals of this form as:

˚
E

f (x, y, z) dV =

¨
D

[ˆ u2(x,z)

u1(x,z)
f (x, y, z) dy

]
dA

15.6.1 Applications of Triple Integrals

• To find the mass occupied by some volume, we integrate the density of that space
with respect to an infinitesimal change in volume:

m =

˚
R

ρ(x, y, z) dV

• Likewise, we can find the moments about the three coordinate axes as follows:

Myz =

˚
R

xρ(x, y, z) dV Mxz =

˚
R

yρ(x, y, z) dV

Mxy =

˚
R

zρ(x, y, z) dV

• The above quantities can be used to determine the center of mass, which is given as:
(x, y, z):

x =
Myz

m
, y =

Mxz

m
, z =

Mxy

m

• Finally, if ρ = c for all (x, y, z) ∈ R, then the center of mass is called the centroid.
Likewise, the three moments of inertia about the coordinate axes are:

Ix =

˚
R
(y2 + z2)ρ(x, y, z) dV Iy =

˚
R
(x2 + z2)ρ(x, y, z) dV

Iz =

˚
R
(x2 + y2)ρ(x, y, z) dV

15.7 Triple Integrals in Cylindrical Coordinates

In a cylindrical coordinate system, we make the following translation:

(x, y, z) (r cos θ, r sin θ, z)

where:
r2 = x2 + y2, tan θ = y/x

Say we have a region E (of type I) which has projection D such that:

E = {(x, y, z) : (x, y) ∈ D, z ∈ [u1(x, y), u2(x, y)]}
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and:
D = {(r, θ) : θ ∈ [α, β], r ∈ [h1(θ), h2(θ)]}

We have that:
˚

E
f (x, y, z) dV =

¨
D

[ˆ u2(x,y)

u1(x,y)
f (x, y, z) dz

]
dA

or, converting to cylindrical coordinates, that:

˚
E

f (x, y, z) dV =

ˆ β

α

ˆ h2(θ)

h1(θ)

ˆ u2(r cos θ,r sin θ)

u1(r cos θ,r sin θ)
f (r cos θ, r sin θ, z) r dz dr dθ

15.8 Triple Integrals in Spherical Coordinates

Another useful coordinate system is the spherical coordinate system, which represents points
(ρ, θ, φ), where ρ = ||P||2, θ is the same angle as in cylindrical coordinates, and φ is the
angle between the positive z-axis and the vector ~P.
Note that:

• ρ = c is a sphere with radius c.

• θ = c is the half-plane with angle c about the positive x-axis.

• φ = c is a half cone which is either above or below the xy-plane, depending on
whether φ is less than or greater than π/2, respectively.

To convert between spherical and rectangular coordinates, observe the following relation-
ships:

x = ρ sin φ cos θ, y = ρ sin φ sin θ, z = ρ cos φ

and that:
ρ2 = x2 + y2 + z2

Our “rectangular” unit in spherical coordinates is the spherical wedge, which is given
as:

E = {(ρ, θ, φ) : ρ ∈ [a, b], θ ∈ [α, β], φ ∈ [c, d]}
We divide E into smaller spherical wedges, Eijk, by equally spaced spheres, half-planes,
and half-cones. The volume is approximately a rectangular box, with ∆ρ, ρi∆φ, and
ρi sin φk∆θ. Thus, the approximate volume of Eijk is given as:

∆Vijk ≈ (∆ρ)(ρi∆φ)(ρi sin φk∆θ)

= ρ2
i sin φk∆ρ∆θ∆φ

An application of the Mean Value Theorem yields exact equality on ∆Vijk, or that:

∆Vijk = ρ̃2
i sin φ̃k∆ρ∆θ∆φ
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where (ρ̃i, θ̃j, φ̃k) ∈ Eijk. Let (x∗ijk, y∗ijk, z∗ijk) be the rectangular coordinates of this point.
Then:
˚

E
f (x, y, z) dV = lim

l,m,n→∞

l

∑
i=1

m

∑
j=1

n

∑
k=1

f (x∗ijk, y∗ijk, z∗ijk)∆Vijk

= lim
l,m,n→∞

l

∑
i=1

m

∑
j=1

n

∑
k=1

f (ρ̃i sin φ̃k cos θ̃j, ρ̃i sin φ̃k sin θ̃j, ρ̃i cos φ̃k)ρ
2
i sin φk∆ρ∆θ∆φ

Hence,
˚

E
f (x, y, z) dV =

ˆ d

c

ˆ β

α

ˆ b

a
f (ρ̃i sin φ̃k cos θ̃j, ρ̃i sin φ̃k sin θ̃j, ρ̃i cos φ̃k)ρ

2
i sin φk dρ dθ, dφ

15.9 Change of Variables in Multiple Integrals

Recall that in single-variable calculus, we often perform a change of variable on a 1-
dimensional integral as follows:

ˆ b

a
f (x) dx =

ˆ d

c
f (g(u))

dx
du

du

More generally, we consider a transformation T from the uv-plane to the xy-plane as:

T(u, v) = (x, y)

where x = g(u, v), and y = h(u, v) (sometimes this is written as: x = x(u, v), and
y = y(u, v)). Note that we assume T is a C1 transformation, meaning that g and h have
continuous first-order partial derivatives. Note that the inverse of these transformations
are denoted u = G(x, y) and v = H(x, y), respectively.
Say we have the image of S (some region in uv-space) projected onto the xy-plane. Note
that we can write a function for the location of the position vector in the image as follows:

~r(u, v) = 〈g(u, v), h(u, v)〉

Note also that we can take the tangent vectors as the first-order derivatives of~r as:

~ru = 〈gu(u0, v0), hu(u0, v0)〉

and similarly:
~rv = 〈gv(u0, v0), hv(u0, v0)〉

Then, we have a parallelogram whose edges are defined by~a,~b as:

~a =~r(u0 + ∆u, v0)−~r(u0, v0)

~b =~r(u0, v0 + ∆v)−~r(u0, v0)
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But, we have that:

~ru = lim
∆u→0

~r(u0 + ∆u, v0)−~r(u0, v0)

∆u
so:

~r(u0 + ∆u, v0)−~r(u0, v0) ≈ ∆u~ru

and:
~r(u0, v0 + ∆v)−~r(u0, v0) ≈ ∆v~rv

This means that we can take the Jacobian to determine the area ∆A. The transformation
Jacobian is given as:

∂(x, y)
∂(u, v)

=

∣∣∣∣∂x/∂u ∂x/∂v
∂y/∂u ∂y/∂v

∣∣∣∣ = [(∂x/∂u)(∂y/∂v)]− [(∂x/∂v)(∂y/∂u)]

Thus we have (from the previous calculation):

∆A ≈
∣∣∣∣ δ(x, y)
δ(u, v)

∣∣∣∣∆u ∆v

Note that:
¨

D
f (x, y) dA = lim

m,n→∞

m

∑
i=1

n

∑
j=1

f (xi, yj)∆A

= lim
m,n→∞

m

∑
i=1

n

∑
j=1

f (g(ui, vj), h(ui, vj))

∣∣∣∣∂(x, y)
∂(u, v)

∣∣∣∣ ∆u ∆v

=

¨
R

f (g(u, v), h(u, v))
∣∣∣∣∂(x, y)
∂(u, v)

∣∣∣∣ du dv

In integrals of three variables, the situation is the same. Let T be a transformation map
from S in uvw-space to R in xyz-space by:

x = g(u, v, w), y = h(u, v, w), z = k(u, v, w)

Then, the Jacobian of T is given as:

∂(x, y, z)
∂(u, v, w)

=

∣∣∣∣∣∣
∂x/∂u ∂x/∂v ∂x/∂w
∂y/∂u ∂y/∂v ∂y/∂w
∂z/∂u ∂z/∂v ∂z/∂w

∣∣∣∣∣∣
And thus that:

˚
R

f (x, y, z) dV =

˚
S

f (x(u, v, w), y(u, v, w), z(u, v, w))

∣∣∣∣ ∂(x, y, z)
∂(u, v, w)

∣∣∣∣ du dv dw



Chapter 14

Partial Derivatives

14.5 The Chain Rule

Recall the Chain Rule for single variable functions gives that if y = f (x) and x = g(t),
that y is indirectly differentiable by a change in t, and that:

dy
dt

=
dy
dx

dx
dt

There are several such cases of the Chain Rule, each described here. First, we deal
with the case where z = f (x, y), and both x and y are differentiable by t. That is, if
z = f (g(t), h(t)), then:

dz
dt

=
∂ f
∂x

dx
dt

+
∂ f
∂y

dy
dt

In the second case, we deal with z = f (x, y) where x and y are each a function of two
variables, say x = g(s, t), y = h(s, t). Then, we have that:

∂z
∂s

=
∂z
∂x

∂x
∂s

+
∂z
∂y

∂y
∂s

,
∂z
∂t

=
∂z
∂x

∂x
∂t

+
∂z
∂y

∂y
∂t

We now present the general case of the Chain Rule. Suppose that u is a differen-
tiable function of x1, x2, . . . , xn, and that each xj (for j ∈ [n]) was itself differentiable by
t1, t2, . . . , tm. Then, u is a function of t1, t2, . . . , tm, and:

∂u
∂ti

=
∂u
∂x1

∂x1

∂ti
+

∂u
∂x2

∂x2

∂ti
+ · · ·+ ∂u

∂xn

∂xn

∂ti

= ∑
j∈[n]

∂u
∂xj

∂xj

∂ti
, for i ∈ [m].

14.6 Directional Derivatives and the Gradient Vector

Suppose now that we have a function f of two variables such that z = f (x, y). We can
observe the gradient of f , which is the vector along which z is tangent at some (x, y), by

12
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the following:
∇ f (x, y) =

〈
fx(x, y), fy(x, y)

〉
=

∂ f
∂x

î +
∂ f
∂y

ĵ

Intuitively,∇ f gives us the direction along which f increases the fastest, whereas |∇ f |
gives us the fastest rate of increase.

14.6.1 Directional Derivatives

Suppose that instead of taking the rate of change along the basis vectors in any particular
subspace, that instead you wanted to compute the rate of change along some arbitrary
vector ~u, instead. Then, we proceed with the following derivation:

For some u = 〈a, b〉, we have that ~r(t) = 〈a0 + at, b0 + bt〉. Then, the directional
derivative is:

Dû f (x0, y0) = lim
h→0

f (x0 + ha, y0 + hb)
h

=
d f (~r(t))

dt

∣∣∣∣
t=0

= ∇ f · û
That is, that Dû f is tangent to the slope along of f cut through the vertical plane contain-
ing û. Note that:

Dû f =
d f
ds

=
∂ f
∂x

dx
dt

+
∂ f
∂y

dy
dt

Note that this obeys the same max/min rules as the standard dot product, and that Dû f :

• ...is maximized when ∇ f is in the direction of û (when θ = 0).

• ...is minimized under the opposite conditions (when θ = π).

• ...is zero when ∇ f ⊥ û (at θ = π/2).



Chapter 16

Vector Calculus

16.1 Vector Fields

A vector field is a space over Rn whose range is Vn (that is, each “point” takes on the
vector of a value in the same number of dimension).

We describe such a field F as the component-wise sum of component functions P, Q,
which is to say that:

~F(x, y) = P(x, y)î + Q(x, y) ĵ

= 〈P(x, y), Q(x, y)〉 = Pî + Qĵ

Note that we can also describe another kind of vector field over some subset of R3; that
is the gradient field of some vector-valued function ~f (x, y, z), which is:

∇ f (x, y, z) = 〈 fx(x, y, z), fy(x, y, z), fz(x, y, z)〉

16.2 Line Integrals

16.2.1 Parameterizations

First, say that~r : [a, b] → R2 is a parameterization of C iff~r(t) = 〈x(t), y(t)〉 is in C for all
t ∈ [a, b], and that it traverses C once. Some examples follow:

1. A half-circle is parameterized as follows. For~r(t) = 〈cos t, sin t〉, and t ∈ [0, π]:{
x = cos t
y = sin t

2. An ellipse of the equation (x− 5)2/4 + (y− 3)2 = 1 is parameterized for t ∈ [0, 2π]
as follows: {

x = 5 + 2 cos t
y = 3 + sin t

14
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16.2.2 Line Integrals

Say that we have a curve C parameterized as~r = x(t)î + y(t) ĵ for t ∈ [a, b]. Let us then
divide the parameter into n sub-intervals of equal width as usual, and corresponding
points Pi(xi, yi) dividing C into sub-arcs ∆si for i ∈ [n]. If we let P∗i (x∗i , y∗i ) be any point
on the ith sub-arc, then the line integral of f across C is:

ˆ
C

f (x, y) ds = lim
∆Si→0

∑
i∈[n]

f (xi, yi)∆Si

=

ˆ b

a
f (x(t), y(t))

√(
dx
dt

)2

+

(
dy
dt

)2

dt

=

ˆ b

a
f (~r(t))|~r′(t)| dt

Example 16.2.1. Suppose that we wish to compute the area of the fence underneath the
half-circle of radius 1 centered at the origin. Then, if f = 2 + x2y, we have a parameteri-
zation: {

x = cos t
y = sin t

and that the line integral is computed as:
ˆ
C

f (x, y) ds =
ˆ b

a
f (cos t, sin t) ds

=

ˆ b

a
2 + cos2 t sin t

√
(− sin t)2 + (cos t)2︸ ︷︷ ︸

1

dt

=

ˆ b

a
2 + cos2 t sin tdt = 2t−

[
1
3

cos3(t)
∣∣∣∣π
t=0

]

16.2.3 Applications of Line Integrals

1. To compute the length of a line C, one has:
ˆ
C

ds = length(C)

2. To compute the average value of a function f over a line C, we have that:

f =
1
`

ˆ
C

f ds

3. If ρ(x, y) is the density of some function along the fence described by f and C, then:

M =

ˆ
C

ρ ds
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and:
x =

1
M

ˆ
C

xρ ds

furthermore:
Iy =

1
M

ˆ
C
(x2 + z2)ρ ds

Note that we can use this definition to compute the work done by moving some particle
along a path C parameterized by ~F = 〈P(x, yz), Q(x, y, z), R(x, y, z)〉 by considering the
ith sub-arc of C and the work done to move across that:

~F(x∗i , y∗i , z∗i ) · [∆si~T(t∗i )]

or that the total work done is approximately:

∑
i∈[n]

[~F(x∗i , y∗i , z∗i ) · ~T(x∗i , y∗i , z∗i )]∆si

and that:
lim

n→∞ ∑
i∈[n]

[~F(x∗i , y∗i , z∗i ) · ~T(x∗i , y∗i , z∗i )]∆si =

ˆ
C
~F · ~T ds

where ~T =
~r′(t)
|~r′(t)| .

16.3 The Fundamental Theorem for Line Integrals

Before discussing the Fundamental Theorem for Line Integrals, let us first discuss a cou-
ple of kinds of line integrals:

1. If we have that F = 〈P, Q〉 (or, alternatively, that F = 〈P, Q, R〉 if we are in R3), then
we can write that: ˆ

C
~F · d~r =

ˆ
C
〈P, Q, R〉 · 〈dx, dy, dz〉

=

ˆ
C

P dx + Q dy + R dz

where P, Q, and R take R3 → R (i.e., that they are a function of (x, y, z)), and
that dx, dy, and dz are the residual differentials (when with respect to time) of a
parameterization of C.

Alternatively, we can write this same kind of integral as:
ˆ
C
~F · d~r =

ˆ
r(t)∈C

~F(~r(t)) · d~r
dt

dt
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2. Secondly, we discuss line integrals over vector fields:
ˆ
C
∇ f · d~r =

ˆ
~r(t)∈C

∂ f
∂x

dx
dt

+
∂ f
∂y

dy
dt

+
∂ f
∂z

dz
dt

=

ˆ
~r(t)∈C

[
d
dt

f (~r(t))
]

dt

Theorem 16.3.1. Let C by a smooth curve parameterized by~r(t) for t ∈ [a, b]. Let f be a
differentiable function of two or three variables, whose gradient vector ∇ f is continuous
on C. Then: ˆ

C
∇ f · d~r = f (~r(b))− f (~r(a)).

Proof. ˆ
C
∇ f · d~r =

ˆ b

a
∇ f (~r(t)) ·~r′(t) dt

=

ˆ b

a

(
∂ f
∂x

dx
dt

+
∂ f
∂y

dy
dt

+
∂ f
∂z

dz
dt

)
dt

=

ˆ b

a

d
dt

f (~r(t)) dt

= f (~r(b))− f (~r(a)).

Note that this implies the following three equivalent properties:

1. ~F is path-independent (i.e., that if any other paths have the same endpoints that they
integrate the same work).

2. ~F is conservative (i.e., that if C is a closed loop that
´
C
~F · d~r = 0).

3. ~F is a gradient field (i.e., that ~F = ∇ f .

One way to visualize that (1)⇐⇒ (2) is that one can form a closed loop C as C = C1− C2
where C1 and C2 have the same endpoints and flow in the same direction. Note that this
implies path-independence from a conservative path (i.e., that C is conservative).

16.3.1 Tests for Gradient Fields

Note that it is often important to test whether a field is indeed that of a gradient field for
some function f . One way to test this in two dimensions is as follows:

Say that ~F = 〈P, Q〉 = ∇ f . Then, we have that:

P =
∂ f
∂x

= fx, and Q =
∂ f
∂y

= fy
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therefore, if we consider Py and Qx, it is clear that fxy = fyx and that this must be a
gradient field. Note that F must be defined at every point in the plane for this to be the
case (i.e., the gradient ∇ f must be defined everywhere).

Another example follows for the three-dimensional case. Let ~F = 〈P, Q, R〉. If ~F = ∇ f ,
then:

Py = fxy = fyx = Qx

Qz = fyz = fzy = Ry

Rx = fxz = fzx = Pz

Theorem 16.3.2. If ~F = 〈P, Q, R〉 is defined for all (x, y, z) ∈ R3, and Py = Qx, Qz = Ry,
and Rx = Pz, then there exists some f for which ~F = ∇ f .

Example 16.3.1. Suppose that we have:

fx = y2

fy = 2xy + e3z

fz = 3ye3z

Then we have that
´

fx dx = f = xy2 + g(y, z), which we can differentiate to obtain
fy = 2xy + gy(y, z), which we know from the given is equal to 2xy + e3z, implying that
gy(y, z) = e3z. Then we have that g(y, z) = ye3z + h(z), so that f = xy2 + ye3z + h(z), and
that after a similar such computation that h = K.

So, we conclude that:
f (x, y, z) = xy2 + ye3z + K

and that we are in a vector field, or equivalently that ∇ f = ~F.

16.4 Green’s Theorem

Theorem 16.4.1 (Green’s).
‰
C

P dx + Q dy =

¨
D

(
∂Q
∂x
− ∂P

∂y

)
dA

We use
�
C to indicate that C is a bounded line with positive orientation.

Consider the following example:

Example 16.4.1. Say we wish to integrate the work done by ~F = 〈3y− esin x, 7x+
√

y4 + 1〉
along the path C described by the positively-oriented rotation about the origin of r2 = 9.



CHAPTER 16. VECTOR CALCULUS 19

Then: ˛
C
~F · d~r =

˛
C

(
3y− esin x

)
dx +

(
7x +

√
y4 + 1

)
dy

=

¨
D

(
∂

∂x

[
7x +

√
y4 + 1

]
− ∂

∂y

[
3y− esin x

])
dA

=

ˆ 2π

0

ˆ 3

0
(7− 3) r dr dθ

= 36π

Note that for Green’s Theorem to be applicable, we must have that the curve C is closed,
i.e., that it has no “endpoint”. Likewise, we must have that the curve is positively oriented,
meaning that the region D is bounded by the left-hand side of the curve when travelling
along it.

16.4.1 Criterion for Gradient Fields

Note also that when applying Green’s theorem, if ~F = ∇~f , then any closed line integral
will equal 0. This is trivial from the fact that ~F = ∇~f =⇒ Qx = Py, and:

˛
C
~F · d~r =

˛
C

P dx + Q dy

=

¨
D
(Qx − Py) dA = 0

16.4.2 Green’s Theorem for Area

To find the area enclosed by a positively oriented C, we can choose a field ~F = 〈P, Q〉 such
that Qx − Py = 1, and then we have that:

˛
C

P dx + Q dy =

¨
D

1 dA

16.5 Curl and Divergence

For a vector field ~F = 〈P, Q〉 ∈ R2, we have:

curl(~F) =
∂Q
∂x
− ∂P

∂y

and
div(~F) =

∂P
∂x

+
∂Q
∂y
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16.5.1 Green’s Theorem (vector version)

Consider a line C such that C = ∂D, with r(t) = (x(t), y(t)) for t ∈ [a, b]. Note the
following special vectors:

• Unit tangent vector:

~T =
(x′, y′)√

(x′)2 + (y′)2

• Outward unit normal:
~N =

(x′,−y′)√
(x′)2 + (y′)2

• Length element:

ds =
√
(x′)2 + (y′)2

Then we have that: ˛
C
~F · ~T ds =

¨
D

curl(~F) dA

is the circulation of ~F around C. Likewise, we have that:
˛
C
~F · ~N ds =

¨
D

div(~F) dA

is the flux of ~F through C.


