Scaling Git

Taylor Blau (GitHub, Inc.)
Git Merge 2024




S whoami

Taylor Blau

@ttaylorr

Staff Software Engineer
GitHub, Inc.




Legacy repository maintenance

Geometric repacking / MIDX bitmaps
(c.f., Git at GitHub Scale, Git Merge 2022)

New things

Multi-pack verbatim reuse
Boundary-based bitmap traversal
Pseudo-merge reachability bitmaps
Multiple cruft packs

Incremental MIDXs



Legacy repository
maintenance



Background

Each new push to a repository on
GitHub results in a new packfile
in

Every ~20 pushes, repository
“maintenance” runs in the
background.

Runs to
repack the repository.



Why?

Faster object lookups (O(log N)
within a single pack, but O(N)
across all packs in worst-case).

Keep reachability bitmaps
up-to-date for fast
fetches/clones.

Compact loose objects and
references.

Enable verbatim pack reuse
optimization.



Problems

Generates a single pack for all

objects in a repository.

o Can be slow / memory-intensive,
especially in large repositories.

Often ran into (generous)
self-imposed timeouts.

Failing to run maintenance
frequently can significantly
degrade repository performance.



Geometric repacking
multi-pack bitmaps



e |dea: ensure each pack contains at
least twice as many objects as

Geometric next-largest pack.
repaCKing e Maintenance runs generally operate

on recent history, avoiding expensive
repacks.



Geometric repacking

12<4 -2< 64

12$1X 4-2 < 32 64 -2 < 128




Geometric repacking

32.2< 64




Reachability
bitmaps

Reachability bitmaps still a critical
optimization.

But which pack do we use to
generate the bitmap?
o Single-pack bitmaps can only
refer to objects in one pack.
o Can't generate bitmaps for
“new" parts of the repository
based on an older pack.

|Idea: construct a “pseudo-pack”
based on the multi-pack index (MIDX)
which refers to all packs.



Multi-pack reachability bitmaps

multi-pack-index-xyz.bitmap

multi-pack-index

pack-abc.pack
pack-123.pack

pack-xyz.pack




Current
maintenance
approach

Result: two-tiered repository
maintenance routine.
o N fast maintenance operations
(do a geometric repack, update
the MIDX).
o 1slow maintenance operation
(generate a single pack, destroy
geometric progression).

Skipping over some details (single-,
and multi-pack reverse indexes, cruft
packs, etc.)
o For more details, c.f., Git at
GitHub Scale.



Problems

“Fast”-tier maintenance operations
still need to update their bitmaps,
which requires rewriting the MIDX,
which is O(# objects).

“Slow"-tier maintenance operations
are likely intractable for the world's
largest repositories.

Could we only do "“fast” operations?
o Missed delta opportunities
o Can't do verbatim pack reuse
o eftc.



Maintenance for
any repository




New things

Multi-pack reuse
Extending verbatim pack
reuse to enable storing
multiple packs at rest.

Multi-cruft pack support
Quickly mark objects
unreachable for repositories
with many such objects.

Bitmap improvements
Faster bitmap traversal and
reads for repositories with
many references.

Incremental MIDX bitmaps
Fast, incremental bitmap
updates that don't require
O(N) time/memory.



Multi-pack
reuse

When generating a pack (e.g.,
to fulfill a fetch/clone request),

Git either:

o Writes an object based on an
existing copy.

o Writes a delta based on an existing
base.

o Writes a section verbatim from an
existing pack.

Verbatim reuse occurs when
the request wants a pack
which contains a section
similar to an existing pack.



Multi-pack
reuse

When this is the case, Git tries
to stream bytes directly from a
source pack to fulfill part of the
fetch/clone request.

Doing so avoids per-object
bookkeeping, so is generally
faster.

...but did not support verbatim
reuse from multiple source
packs.



Multi-pack reuse




Multi-pack
reuse

Copy bytes for a given object
verbatim from source pack(s)

to destination, iff:

o The destination pack should
include that object.

o The source object is either a delta
of an object we reused earlier, or
not stored as a delta.

Break cross-pack deltas.

Patch s when there
are >0 non-reused bytes
between delta/base objects.



$ hyperfine -L v single,multi -n '{v}-pack reuse'
'git.compile -c pack.allowPackReuse={v} pack-objects --revs --stdout
--use-bitmap-index --delta-base-offset <in >/dev/null’




-

$ hyperfine -L v single,multi -n '{v}-pack reuse'
'git.compile -c pack.allowPackReuse={v} pack-objects --revs --stdout
--use-bitmap-index --delta-base-offset <in >/dev/null’

Benchmark 1: single-pack reuse
Time (mean % o): 6.094 s 0.023 s [User: 43.723 s, System: 0.358 s]
Range (min .. max): 6.063 s .. 6.126 s 10 runs

I+

Benchmark 2: multi-pack reuse

Time (mean % o): 906.5 ms + 3.2 ms [User: 1081.5 ms, System: 30.9 ms]
Range (min .. max): 903.5 ms .. 912.7 ms 10 runs
Summary

multi-pack reuse ran
6.72 + 0.03 times faster than single-pack reuse



Non-collision
detecting
SHA-1

Git uses a collision detecting
SHA-1 by default.

But noticed something peculiar
when starting to use multi-pack
reuse within GitHub's
infrastructure...



of clone

00 O x 4+
« > cC a R e

handle_builtin
100.00 %

2 x

reuse_partial_packfile_from_bitmap
[_18.96 %

131164 1...

offset_to_pack_pos
[_15.86 %
1667 453 x

fill_in_bitmap
12034 44...
[_17.09%

1667 454 x

git_hash_shal_update traverse_commit_list_filtered




Non-collision
detecting
SHA-1

Git spends ~78% of CPU
instructions (!) in

to generate a checksum which
is not used for cryptographic
purposes.

Could we use a faster,
non-collision detecting SHA-1
for non-cryptographic uses
only?
o Yes, lots of subtlety discussed
, but ultimately safe.


https://lore.kernel.org/git/cover.1725206584.git.me@ttaylorr.com/

S git for-each-ref --format='%(objectname)’ refs/{heads,tags} >in
$ hyperfine -L v slow,fast -n '{v} SHA-1\
‘git.{v} pack-objects --revs --stdout --all-progress --use-bitmap-index
--delta-base-offset >/dev/null <in'

A
-



-

il

$ git for-each-ref --format='%(objectname)’ refs/{heads,tags} >in
$ hyperfine -L v slow,fast -n '{v} SHA-1\
'git.{v} pack-objects --revs --stdout --all-progress --use-bitmap-index
--delta-base-offset >/dev/null <in'

Benchmark 1: slow SHA-1

Time (mean t o): 17.414 0.118 s [User: 17.175 s, System: 0.239 s]

(]
I+

Range (min .. max): 17.337 s .. 17.712 s 10 runs

Benchmark 2: fast SHA-1
Time (mean t o): 10.056 s + 0.062 s [User: 9.831 s, System: 0.225 s]
Range (min .. max): 9.955 s .. 10.122 s 10 runs

Summary
fast SHA-1 implementation ran
1.73 & 0.02 times faster than slow SHA-1



e Ideally have coverage for all
branches/tags within a
repository.

e But having a bitmap for each
reference can be expensive

[ J
Bltmap o Requires lots of memory
° o Cache-inefficient, lots of time
Im provements spent decompressing
bitmaps, -ing, etc.

e Two improvements to bitmap

reads

o Boundary-based bitmap traversal

o Pseudo-merge reachability
bitmaps



Boundary-
based bitmap
traversals

Existing bitmap traversal

routine:
o Build up a complete bitmap of
UNINTERESTING objects, using
existing bitmaps when possible

o  Build up a bitmap of interesting
objects, using existing bitmaps
where possible, stopping when we
“run into” any object(s) in the
UNINTERESTING bitmap.

“Demo”



Classic bitmap traversal

want: 000000000000000000000 ~-|refs/heads/quux|
have: 000000000000000000000 f‘
&~ : 000000000000000000000

@ _|refs/heads/main

Irefs/tags/v2.42.0 | ~ : ) “] ( | -|refs/heads/baz|

100000000000000000000

|
@ _, ~|refs/heads/bar]
=" 111111000001100000011

. {refs/heads/foo]




e With poor bitmap coverage,
existing traversal can
degenerate into a full object

walk.
e I|dea: represent the
Boundal:y side of the
based b|tmap query by the boundary
between interesting and
traversals uninteresting objects.

o For our purposes, boundary means
the first commit reachable from
interesting side that is also
reachable from uninteresting side.

PY “DemO"



Boundary-based bitmap traversal

want: 000000000000000000000
have: 000000000000000000000

&~ : 000000000000000000000

[iefs/tags/v2.42.01
100000000000000000000

,1refs/heads/quux|

x {refs/heads/foo]

| [refs/heads/bar|
" 111111000001100000011




$ ours="$(git branch --show-current)"
$ argv="--count --objects Sours --not --exclude=Sours --branches"
$ hyperfine \
-n 'classic bitmap traversal' "git rev-list --use-bitmap-index Sargv" \
-n 'boundary bitmap traversal' "git.compile rev-list --use-bitmap-index Sargv"

N




-

il

$ ours="$(git branch --show-current)"
$ argv="--count --objects Sours --not --exclude=Sours --branches"
$ hyperfine \
-n 'classic bitmap traversal' "git rev-list --use-bitmap-index Sargv" \
-n 'boundary bitmap traversal' "git.compile rev-list --use-bitmap-index Sargv"

Benchmark 1: classic bitmap traversal

Time (mean t o): 82.6 ms + 9.2 ms [User: 63.6 ms, System: 19.0 ms]
Range (min .. max): 73.8 ms .. 165.4 ms 28 runs

Benchmark 2: boundary bitmap traversal
Time (mean t o): 19.8 ms £+ 3.1 ms [User: 13.0 ms, System: 6.8 ms]
Range (min .. max): 17.7 ms .. 38.6 ms 158 runs

Summary

"boundary bitmap traversal' ran
4.17 * 0.57 times faster than classic bitmap traversal'’



e Another aspect of poor bitmap
coverage: lots of references
limits bitmap selection.

e Suppose a user tells us they
already have objects reachable

PSQUdO'merge from branches A, B, and

° o Ideally we have bitmaps for A, B,
b Itma pS and
o  Storing individual bitmaps for
every branch can be expensive.
o What if we stored a single bitmap
for the conceptual “merge”
between A, B, and C?

PY llDemo"



Pseudo-merge bitmaps

{Cu1), Cr2), Coms Coal [LAA[LA[A[1[1[1[1[1[1][1]1]1]1]1]1]0]0[0]
Cu,1): [1]1]o]o]o]o]o[o]o]o]o]o]o[o]o]o]o]o]0]0]0]
Clo): [1[1]1]1]o]ofo[oo[olo[ofo[o]o[ofofo[o]o]0]
Cos): [1[1]1]1]1]1]o]o]o]o]o]o]olo]o]o]o]o]o]0]0]




--use-bitmap-index’

‘ $ hyperfine -L v ,.compile 'git{v} rev-list --all --objects --count

z
Wy



-

$ hyperfine -L v ,.compile 'git{v} rev-list --all --objects --count
--use-bitmap-index'

Benchmark 1: git rev-list --all --objects --count --use-bitmap-index
Time (mean t o): 16.129 s + 0.079 s [User: 15.681 s, System: 0.446 s]
Range (min .. max): 16.029 s .. 16.243 s 10 runs

Benchmark 2: git.compile rev-list --all --objects --count --use-bitmap-index

Time (mean t o): 874.9 ms £ 20.4 ms [User: 611.4 ms, System: 263.3 ms]
Range (min .. max): 847.1 ms .. 904.3 ms 10 runs
Summary

git.compile rev-list --all --objects --count --use-bitmap-index ran
18.43 + 0.44 times faster than git rev-list --all --objects --count
--use-bitmap-index



Multi-cruft
pack support

Cruft packs store unreachable
objects with their last-modified
time in a corresponding

file.

o Used to record last-modified times
for unreachable objects which are too
recent to prune instead of exploding
as loose.

Requires significant number of
|/O-cycles to update the set of
unreachable objects for large
repositories.

Solution: allow storing multiple
cruft packs, use most recent
mtime to break ties.



Incremental
MIDX/bitmaps

Lots of optimizations discussed
so far, but...

Updating the MIDX (& bitmaps) is
still O(# objects)

Want to get to a place where:

o Bitmaps can be updated
independently of pack
generation

o Updating bitmaps does not
require rewriting existing
bitmaps

o |OW: updating bitmaps
should be proportional to
O(# new objects)



Incremental
MIDX/bitmaps

|dea: store the multi-pack
indexes in a incremental chain

Each layer of the chain contains
a distinct set of packs/objects
from previous layers

“Object order” for bitmap
generation is concatenated
across multiple MIDX layers
o Safe to do, since each layer
stores a distinct set of
objects



Incremental
MIDX/bitmaps

e Still in development.

e Three-phase approach:

o Phase one: support for
incremental MIDXs, no
bitmaps

o Phase two: support for
incremental MIDXs with
bitmaps.

o Phase three: new repacking
strategy.

e Phase one is merged, phase two
is in review. Phase three is still
in-design.



Putting it all together

Pre-2020 maintenance routines scale like O(# objects in repository)
Current maintenance routines scale (mostly) like O(# new objects), but still
require expensive maintenance at the end of long cycles.
Four groups of work that will enable us to remove O(# objects) steps(s)
o Multi-pack reuse = Break repository into multiple packs long-term
without sacrificing performance.
o Multi-cruft pack support = Cheap updates to the set of unreachable
objects, regardless of size.
o Bitmap improvements = Fast repository traversal, even with large
numbers of references.
o Incremental MIDX bitmaps = Cheap updates to reachability bitmaps,
working only in recent parts of the repository.



Putting it all together

e Git repository maintenance that can scale to the world’s largest
repositories (and beyond).

e ...powered by tools and techniques developed at GitHub, which are shared
with the open-source project.

e The same tools powering GitHub can (and do!) run on your laptop all the
time.



q

() Thank you



