
Scaling Git

Taylor Blau GitHub, Inc.)
Git Merge 2024

Taylor Blau
@ttaylorr

Staff Software Engineer
GitHub, Inc.

$ whoami

Agenda

Legacy repository maintenance

Geometric repacking / MIDX bitmaps

New things
● Multi-pack verbatim reuse
● Boundary-based bitmap traversal
● Pseudo-merge reachability bitmaps
● Multiple cruft packs
● Incremental MIDXs

(c.f., Git at GitHub Scale, Git Merge 2022

Legacy repository
maintenance

Background

● Each new push to a repository on
GitHub results in a new packfile
in $GIT_DIR/objects/pack.

● Every 20 pushes, repository
“maintenanceˮ runs in the
background.

● Runs git repack -adkn to
repack the repository.

Why?

● Faster object lookups O(log N)
within a single pack, but ON
across all packs in worst-case).

● Keep reachability bitmaps
up-to-date for fast
fetches/clones.

● Compact loose objects and
references.

● Enable verbatim pack reuse
optimization.

Problems

● Generates a single pack for all
objects in a repository.
○ Can be slow / memory-intensive,

especially in large repositories.

● Often ran into (generous)
self-imposed timeouts.

● Failing to run maintenance
frequently can significantly
degrade repository performance.

Geometric repacking &
multi-pack bitmaps

Geometric
repacking

● Idea: ensure each pack contains at
least twice as many objects as
next-largest pack.

● Maintenance runs generally operate
on recent history, avoiding expensive
repacks.

Geometric repacking

Geometric repacking

Reachability
bitmaps

● Reachability bitmaps still a critical
optimization.

● But which pack do we use to
generate the bitmap?
○ Single-pack bitmaps can only

refer to objects in one pack.
○ Canʼt generate bitmaps for

“newˮ parts of the repository
based on an older pack.

● Idea: construct a “pseudo-packˮ
based on the multi-pack index MIDX
which refers to all packs.

Multi-pack reachability bitmaps

● Result: two-tiered repository
maintenance routine.
○ N fast maintenance operations

(do a geometric repack, update
the MIDX.

○ 1 slow maintenance operation
(generate a single pack, destroy
geometric progression).

● Skipping over some details (single-,
and multi-pack reverse indexes, cruft
packs, etc.)
○ For more details, c.f., Git at

GitHub Scale.

Current
maintenance
approach

● “Fastˮ-tier maintenance operations
still need to update their bitmaps,
which requires rewriting the MIDX,
which is O# objects).

● “Slowˮ-tier maintenance operations
are likely intractable for the worldʼs
largest repositories.

● Could we only do “fastˮ operations?
○ Missed delta opportunities
○ Canʼt do verbatim pack reuse
○ etc.

Problems

Maintenance for
any repository

New things

Bitmap improvements
Faster bitmap traversal and
reads for repositories with
many references.

Multi-pack reuse
Extending verbatim pack
reuse to enable storing
multiple packs at rest.

Incremental MIDX bitmaps
Fast, incremental bitmap
updates that donʼt require
ON) time/memory.

Multi-cruft pack support
Quickly mark objects
unreachable for repositories
with many such objects.

Multi-pack
reuse

● When generating a pack (e.g.,
to fulfill a fetch/clone request),
Git either:
○ Writes an object based on an

existing copy.
○ Writes a delta based on an existing

base.
○ Writes a section verbatim from an

existing pack.

● Verbatim reuse occurs when
the request wants a pack
which contains a section
similar to an existing pack.

Multi-pack
reuse

● When this is the case, Git tries
to stream bytes directly from a
source pack to fulfill part of the
fetch/clone request.

● Doing so avoids per-object
bookkeeping, so is generally
faster.

● …but did not support verbatim
reuse from multiple source
packs.

Multi-pack reuse

Multi-pack
reuse

● Copy bytes for a given object
verbatim from source pack(s)
to destination, iff:
○ The destination pack should

include that object.
○ The source object is either a delta

of an object we reused earlier, or
not stored as a delta.

● Break cross-pack deltas.

● Patch OFS_DELTAs when there
are 0 non-reused bytes
between delta/base objects.

“$ hyperfine -L v single,multi -n '{v}-pack reuse'
 'git.compile -c pack.allowPackReuse={v} pack-objects --revs --stdout
 --use-bitmap-index --delta-base-offset <in >/dev/null'

Benchmark 1: single-pack reuse
 Time (mean ± σ): 6.094 s ± 0.023 s [User: 43.723 s, System: 0.358 s]
 Range (min … max): 6.063 s … 6.126 s 10 runs

Benchmark 2: multi-pack reuse
 Time (mean ± σ): 906.5 ms ± 3.2 ms [User: 1081.5 ms, System: 30.9 ms]
 Range (min … max): 903.5 ms … 912.7 ms 10 runs

Summary
 multi-pack reuse ran
 6.72 ± 0.03 times faster than single-pack reuse

“$ hyperfine -L v single,multi -n '{v}-pack reuse'
 'git.compile -c pack.allowPackReuse={v} pack-objects --revs --stdout
 --use-bitmap-index --delta-base-offset <in >/dev/null'

Benchmark 1: single-pack reuse
 Time (mean ± σ): 6.094 s ± 0.023 s [User: 43.723 s, System: 0.358 s]
 Range (min … max): 6.063 s … 6.126 s 10 runs

Benchmark 2: multi-pack reuse
 Time (mean ± σ): 906.5 ms ± 3.2 ms [User: 1081.5 ms, System: 30.9 ms]
 Range (min … max): 903.5 ms … 912.7 ms 10 runs

Summary
 multi-pack reuse ran
 6.72 ± 0.03 times faster than single-pack reuse

Non-collision
detecting
SHA1

● Git uses a collision detecting
SHA1 by default.

● But noticed something peculiar
when starting to use multi-pack
reuse within GitHubʼs
infrastructure…

kcachegrind of linux.git clone

Non-collision
detecting
SHA1

● Git spends 78% of CPU
instructions !) in hashwrite()
to generate a checksum which
is not used for cryptographic
purposes.

● Could we use a faster,
non-collision detecting SHA1
for non-cryptographic uses
only?
○ Yes, lots of subtlety discussed

here, but ultimately safe.

https://lore.kernel.org/git/cover.1725206584.git.me@ttaylorr.com/

“$ git for-each-ref --format=’%(objectname)’ refs/{heads,tags} >in
$ hyperfine -L v slow,fast -n '{v} SHA-1\
 'git.{v} pack-objects --revs --stdout --all-progress --use-bitmap-index
 --delta-base-offset >/dev/null <in'

Benchmark 1: slow SHA-1
 Time (mean ± σ): 17.414 s ± 0.118 s [User: 17.175 s, System: 0.239 s]
 Range (min … max): 17.337 s … 17.712 s 10 runs

Benchmark 2: fast SHA-1
 Time (mean ± σ): 10.056 s ± 0.062 s [User: 9.831 s, System: 0.225 s]
 Range (min … max): 9.955 s … 10.122 s 10 runs

Summary
 fast SHA-1 implementation ran
 1.73 ± 0.02 times faster than slow SHA-1

“$ git for-each-ref --format=’%(objectname)’ refs/{heads,tags} >in
$ hyperfine -L v slow,fast -n '{v} SHA-1\
 'git.{v} pack-objects --revs --stdout --all-progress --use-bitmap-index
 --delta-base-offset >/dev/null <in'

Benchmark 1: slow SHA-1
 Time (mean ± σ): 17.414 s ± 0.118 s [User: 17.175 s, System: 0.239 s]
 Range (min … max): 17.337 s … 17.712 s 10 runs

Benchmark 2: fast SHA-1
 Time (mean ± σ): 10.056 s ± 0.062 s [User: 9.831 s, System: 0.225 s]
 Range (min … max): 9.955 s … 10.122 s 10 runs

Summary
 fast SHA-1 implementation ran
 1.73 ± 0.02 times faster than slow SHA-1

● Ideally have coverage for all
branches/tags within a
repository.

● But having a bitmap for each
reference can be expensive
○ Requires lots of memory
○ Cache-inefficient, lots of time

spent decompressing EWAH
bitmaps, XOR-ing, etc.

● Two improvements to bitmap
reads
○ Boundary-based bitmap traversal
○ Pseudo-merge reachability

bitmaps

Bitmap
improvements

Boundary-
based bitmap
traversals

● Existing bitmap traversal
routine:
○ Build up a complete bitmap of

UNINTERESTING objects, using
existing bitmaps when possible

○ Build up a bitmap of interesting
objects, using existing bitmaps
where possible, stopping when we
“run intoˮ any object(s) in the
UNINTERESTING bitmap.

● “Demoˮ

Classic bitmap traversal

Boundary-
based bitmap
traversals

● With poor bitmap coverage,
existing traversal can
degenerate into a full object
walk.

● Idea: represent the
UNINTERESTING side of the
query by the boundary
between interesting and
uninteresting objects.
○ For our purposes, boundary means

the first commit reachable from
interesting side that is also
reachable from uninteresting side.

● “Demoˮ

Boundary-based bitmap traversal

“$ ours="$(git branch --show-current)"
$ argv="--count --objects $ours --not --exclude=$ours --branches"
$ hyperfine \
 -n 'classic bitmap traversal' "git rev-list --use-bitmap-index $argv" \
 -n 'boundary bitmap traversal' "git.compile rev-list --use-bitmap-index $argv"

Benchmark 1: classic bitmap traversal
 Time (mean ± σ): 82.6 ms ± 9.2 ms [User: 63.6 ms, System: 19.0 ms]
 Range (min … max): 73.8 ms … 105.4 ms 28 runs

Benchmark 2: boundary bitmap traversal
 Time (mean ± σ): 19.8 ms ± 3.1 ms [User: 13.0 ms, System: 6.8 ms]
 Range (min … max): 17.7 ms … 38.6 ms 158 runs

Summary
 'boundary bitmap traversal' ran
 4.17 ± 0.57 times faster than classic bitmap traversal'

“$ ours="$(git branch --show-current)"
$ argv="--count --objects $ours --not --exclude=$ours --branches"
$ hyperfine \
 -n 'classic bitmap traversal' "git rev-list --use-bitmap-index $argv" \
 -n 'boundary bitmap traversal' "git.compile rev-list --use-bitmap-index $argv"

Benchmark 1: classic bitmap traversal
 Time (mean ± σ): 82.6 ms ± 9.2 ms [User: 63.6 ms, System: 19.0 ms]
 Range (min … max): 73.8 ms … 105.4 ms 28 runs

Benchmark 2: boundary bitmap traversal
 Time (mean ± σ): 19.8 ms ± 3.1 ms [User: 13.0 ms, System: 6.8 ms]
 Range (min … max): 17.7 ms … 38.6 ms 158 runs

Summary
 'boundary bitmap traversal' ran
 4.17 ± 0.57 times faster than classic bitmap traversal'

Pseudo-merge
bitmaps

● Another aspect of poor bitmap
coverage: lots of references
limits bitmap selection.

● Suppose a user tells us they
already have objects reachable
from branches A, B, and C.
○ Ideally we have bitmaps for A, B,

and C.
○ Storing individual bitmaps for

every branch can be expensive.
○ What if we stored a single bitmap

for the conceptual “mergeˮ
between A, B, and C?

● “Demoˮ

Pseudo-merge bitmaps

“$ hyperfine -L v ,.compile 'git{v} rev-list --all --objects --count
 --use-bitmap-index'

Benchmark 1: git rev-list --all --objects --count --use-bitmap-index
 Time (mean ± σ): 16.129 s ± 0.079 s [User: 15.681 s, System: 0.446 s]
 Range (min … max): 16.029 s … 16.243 s 10 runs

Benchmark 2: git.compile rev-list --all --objects --count --use-bitmap-index
 Time (mean ± σ): 874.9 ms ± 20.4 ms [User: 611.4 ms, System: 263.3 ms]
 Range (min … max): 847.1 ms … 904.3 ms 10 runs

Summary
 git.compile rev-list --all --objects --count --use-bitmap-index ran
 18.43 ± 0.44 times faster than git rev-list --all --objects --count
--use-bitmap-index

“$ hyperfine -L v ,.compile 'git{v} rev-list --all --objects --count
 --use-bitmap-index'

Benchmark 1: git rev-list --all --objects --count --use-bitmap-index
 Time (mean ± σ): 16.129 s ± 0.079 s [User: 15.681 s, System: 0.446 s]
 Range (min … max): 16.029 s … 16.243 s 10 runs

Benchmark 2: git.compile rev-list --all --objects --count --use-bitmap-index
 Time (mean ± σ): 874.9 ms ± 20.4 ms [User: 611.4 ms, System: 263.3 ms]
 Range (min … max): 847.1 ms … 904.3 ms 10 runs

Summary
 git.compile rev-list --all --objects --count --use-bitmap-index ran
 18.43 ± 0.44 times faster than git rev-list --all --objects --count
--use-bitmap-index

Multi-cruft
pack support

● Cruft packs store unreachable
objects with their last-modified
time in a corresponding
*.mtimes file.
○ Used to record last-modified times

for unreachable objects which are too
recent to prune instead of exploding
as loose.

● Requires significant number of
I/O-cycles to update the set of
unreachable objects for large
repositories.

● Solution: allow storing multiple
cruft packs, use most recent
mtime to break ties.

● Lots of optimizations discussed
so far, but…

● Updating the MIDX & bitmaps) is
still O# objects)

● Want to get to a place where:
○ Bitmaps can be updated

independently of pack
generation

○ Updating bitmaps does not
require rewriting existing
bitmaps

○ IOW: updating bitmaps
should be proportional to
O# new objects)

Incremental
MIDX/bitmaps

● Idea: store the multi-pack
indexes in a incremental chain

● Each layer of the chain contains
a distinct set of packs/objects
from previous layers

● “Object orderˮ for bitmap
generation is concatenated
across multiple MIDX layers
○ Safe to do, since each layer

stores a distinct set of
objects

Incremental
MIDX/bitmaps

● Still in development.

● Three-phase approach:
○ Phase one: support for

incremental MIDXs, no
bitmaps

○ Phase two: support for
incremental MIDXs with
bitmaps.

○ Phase three: new repacking
strategy.

● Phase one is merged, phase two
is in review. Phase three is still
in-design.

Incremental
MIDX/bitmaps

Putting it all together
● Pre-2020 maintenance routines scale like O# objects in repository)
● Current maintenance routines scale (mostly) like O# new objects), but still

require expensive maintenance at the end of long cycles.
● Four groups of work that will enable us to remove O# objects) steps(s)

○ Multi-pack reuse ⇒ Break repository into multiple packs long-term
without sacrificing performance.

○ Multi-cruft pack support ⇒ Cheap updates to the set of unreachable
objects, regardless of size.

○ Bitmap improvements ⇒ Fast repository traversal, even with large
numbers of references.

○ Incremental MIDX bitmaps ⇒ Cheap updates to reachability bitmaps,
working only in recent parts of the repository.

Putting it all together
● Git repository maintenance that can scale to the worldʼs largest

repositories (and beyond).

● …powered by tools and techniques developed at GitHub, which are shared
with the open-source project.

● The same tools powering GitHub can (and do!) run on your laptop all the
time.

